Bell's theorem. Experimental tests and implications

Bell's theorem represents a significant advance in understanding the conceptual foundations of quantum mechanics. The theorem shows that essentially all local theories of natural phenomena that are formulated within the framework of realism may be tested using a single experimental arrangement. Moreover, the predictions by those theories must significantly differ from those by quantum mechanics. Experimental results evidently refute the theorem's predictions for these theories and favour those of quantum mechanics. The conclusions are philosophically startling: either one must totally abandon the realistic philosophy of most working scientists, or dramatically revise out concept of space-time.

[1]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[2]  Louis de Broglie,et al.  La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .

[3]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[4]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[5]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[6]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[8]  W. H. Furry Note on the Quantum-Mechanical Theory of Measurement , 1936 .

[9]  C. Wu,et al.  The Angular Correlation of Scattered Annihilation Radiation , 1950 .

[10]  L. Broglie,et al.  La physique quantique restera-t-elle indéterministe ? , 1952 .

[11]  J. P. Vigier,et al.  Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations , 1954 .

[12]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[13]  H. Freistadt The Causal Formulation of Quantum Mechanics of Particles (the Theory of De Broglie, Bohm and Takabayasi) , 1957 .

[14]  D. Bohm,et al.  Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky , 1957 .

[15]  D. R. Inglis COMPLETENESS OF QUANTUM MECHANICS AND CHARGE-CONJUGATION CORRELATIONS OF THETA PARTICLES , 1961 .

[16]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[17]  A. Akhiezer,et al.  QUANTUM ELECTRODYNAMICS. , 1965 .

[18]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[19]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[20]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[21]  V. Capasso,et al.  von Neumann’s theorem and hidden-variable models , 1970 .

[22]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[23]  E. Wigner On Hidden Variables and Quantum Mechanical Probabilities , 1970 .

[24]  Henry P. Stapp,et al.  S-MATRIX INTERPRETATION OF QUANTUM THEORY. , 1971 .

[25]  B. D'espagnat Conceptual Foundations Of Quantum Mechanics , 1971 .

[26]  Experimental Limitations to the Validity of Semiclassical Radiation Theories , 1972 .

[27]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[28]  J. Bell,et al.  Perspectives In Quantum Theory. Essays in Honor of Alfred Landé. Wolfgang Yourgrau and Alwyn van der Merwe, Eds. M.I.T. Press, Cambridge, Mass., 1971. xl, 282 pp., illus. $17.50 , 1972 .

[29]  E. Fry Two-Photon Correlations in Atomic Transitions , 1973 .

[30]  D. Gutkowski,et al.  An inequality stronger than Bell’s inequality , 1974 .

[31]  L. Ballentine,et al.  A Survey of Hidden‐Variables Theories , 1974 .

[32]  J. Clauser Experimental distinction between the quantum and classical field - theoretic predictions for the pho , 1973 .

[33]  G. Faraci,et al.  An experimental test of the EPR paradox , 1974 .

[34]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[35]  J. Wheeler,et al.  The Physics of Time Asymmetry , 1974 .

[36]  C. Wu,et al.  Angular correlation of compton-scattered annihilation photons and hidden variables , 1975 .

[37]  B. D'espagnat Use of inequalities for the experimental test of a general conception of the foundation of microphysics , 1975 .

[38]  A. Aspect Proposed experiment to test the nonseparability of quantum mechanics , 1976 .

[39]  W. Mittig,et al.  Quantum mechanics and hidden variables: A test of Bell's inequality by the measurement of the spin correlation in low-energy proton-proton scattering , 1976 .

[40]  Measurement of the relative planes of polarization of annihilation quanta as a function of separation distance , 1976 .

[41]  J. Clauser EXPERIMENTAL INVESTIGATION OF A POLARIZATION CORRELATION ANOMALY , 1976 .

[42]  J. Clauser Measurement of the circular-polarization correlation in photons from an atomic cascade , 1976 .

[43]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[44]  P. H. Eberhard,et al.  Bell's theorem without hidden variables , 1977 .

[45]  F. Selleri On the consequences of Einstein locality , 1978 .