Nonparametric Tests for Independence

Glossary Hypothesis A hypothesis is a statement concerning the (joint) distribution underlying the observed data. Nonparametric test In contrast to a parametric test, a nonparametric test does not presume a particular parametric structure concerning the data generating process. Serial dependence Statistical dependence among time series observations.

[1]  Guy Melard,et al.  Rank-based tests for randomness against first-order serial dependence , 1988 .

[2]  R. Bartels The Rank Version of von Neumann's Ratio Test for Randomness , 1982 .

[3]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[4]  Christian Genest,et al.  Locally most powerful rank tests of independence for copula models , 2005 .

[5]  Yongmiao Hong,et al.  Generalized spectral tests for serial dependence , 2000 .

[6]  G. A. Barnard,et al.  Discussion of Professor Bartlett''s paper , 1963 .

[7]  Jeffrey S. Racine,et al.  A versatile and robust metric entropy test of time-reversibility, and other hypotheses , 2007 .

[8]  Salil K. Sarkar,et al.  Nonlinear dependence in Finnish stock returns , 1994 .

[9]  M. Hinich,et al.  Statistical Inadequacy of GARCH Models for Asian Stock Markets , 2005 .

[10]  C. Tsallis Generalized entropy-based criterion for consistent testing , 1998 .

[11]  G. Caporale,et al.  The BDS Test as a Test for the Adequacy of a GARCH(1,1) Specification. A Monte Carlo Study , 2005 .

[12]  Ngai Hang Chan,et al.  NONPARAMETRIC TESTS FOR SERIAL DEPENDENCE , 1992 .

[13]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[14]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[15]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[16]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[17]  A. Lo Finance: A Selective Survey , 2000 .

[18]  M. Hinich Testing for Gaussianity and Linearity of a Stationary Time Series. , 1982 .

[19]  J. Horowitz Chapter 52 The Bootstrap , 2001 .

[20]  T. Ledwina,et al.  Data-Driven Rank Tests for Independence , 1999 .

[21]  Ľuboš Briatka,et al.  Optimal Range for the iid Test Based on Integration Across the Correlation Integral , 2005 .

[22]  T. Bollerslev Generalized autoregressive conditional heteroskedasticity with applications in finance , 1986 .

[23]  Jean-Marie Dufour,et al.  Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard , 2006 .

[24]  E. Carlstein Degenerate U-Statistics Based on Non-Independent Observations , 1988 .

[25]  J. Neumann Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .

[26]  J. Durbin,et al.  Corrections to Part I: Testing for Serial Correlation in Least Squares Regression: I , 1951 .

[27]  W. Hoeffding A Non-Parametric Test of Independence , 1948 .

[28]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[29]  P. D. Lima,et al.  Nuisance parameter free properties of correlation integral based statistics , 1996 .

[30]  B. Rémillard,et al.  A Nonparametric Test of Serial Independence for Time Series and Residuals , 2001 .

[31]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .

[32]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[33]  E. J. Hannan TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION , 1957 .

[34]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[35]  Douglas M. Patterson,et al.  Evidence of Nonlinearity in Daily Stock Returns , 1985 .

[36]  C. Genest,et al.  Tests of serial independence based on Kendall's process , 2002 .

[37]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[38]  Dag Tjøstheim,et al.  Nonparametric tests of linearity for time series , 1995 .

[39]  Douglas M. Patterson,et al.  A Nonparametric, Distribution-Free Test for Serial Independence in Stock Returns , 1986, Journal of Financial and Quantitative Analysis.

[40]  M. Denker,et al.  On U-statistics and v. mise’ statistics for weakly dependent processes , 1983 .

[41]  Optimal rank-based tests against first-order superdiagonal bilinear dependence , 1992 .

[42]  Philip Rothman The Comparative Power of the TR Test against Simple Threshold Models , 1992 .

[43]  Miguel A. Delgado,et al.  A nonparametric test for serial independence of regression errors , 2000 .

[44]  M. Rosenblatt A Quadratic Measure of Deviation of Two-Dimensional Density Estimates and A Test of Independence , 1975 .

[45]  M. Taqqu,et al.  Dependence in Probability and Statistics , 1986 .

[46]  H. Theil,et al.  Testing the Independence of Regression Disturbances , 1961 .

[47]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[48]  D. Tjøstheim,et al.  Nonparametric tests of serial independence , 1993 .

[49]  Dag Tjøstheim,et al.  Linearity Testing using Local Polynomial Approximation , 1998 .

[50]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[51]  B. Rémillard,et al.  Rank-Based Extensions of the Brock, Dechert, and Scheinkman Test , 2007 .

[52]  Melvin J. Hinich,et al.  Bicorrelations and cross‐bicorrelations as non‐linearity tests and tools for exchange rate forecasting , 2001 .

[53]  C. Granger,et al.  USING THE MUTUAL INFORMATION COEFFICIENT TO IDENTIFY LAGS IN NONLINEAR MODELS , 1994 .

[54]  F. Takens Detecting strange attractors in turbulence , 1981 .

[55]  Melvin J. Hinich,et al.  Cross-correlations and cross-bicorrelations in Sterling exchange rates , 1999 .

[56]  David S. Johnson,et al.  Nonparametric Tests for the Independence of Regressors and Disturbances as Specification Tests , 1997, Review of Economics and Statistics.

[57]  H. Joe Relative Entropy Measures of Multivariate Dependence , 1989 .

[58]  T. Ferguson,et al.  Kendall's tau for serial dependence , 2000 .

[59]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[60]  R. Lockhart,et al.  Tests of Independence in Time Series , 1998 .

[61]  Gerhard Keller,et al.  Rigorous statistical procedures for data from dynamical systems , 1986 .

[62]  Patrick L. Brockett,et al.  Bispectral-Based Tests for the Detection of Gaussianity and Linearity in Time Series , 1988 .

[63]  H. White,et al.  ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC ENTROPY MEASURES OF SERIAL DEPENDENCE , 2005 .

[64]  R. Wolff Independence in time series: another look at the BDS test , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[65]  P. Mikusinski,et al.  Introduction to Hilbert spaces with applications , 1990 .

[66]  Douglas M. Patterson,et al.  A DIAGNOSTIC TEST FOR NONLINEAR SERIAL DEPENDENCE IN TIME SERIES FITTING ERRORS , 1986 .

[67]  Chris Brooks,et al.  The Effect of (Mis-Specified) GARCH Filters on the Finite Sample Distribution of the BDS Test , 1999 .

[68]  E. Maasoumi,et al.  A Dependence Metric for Possibly Nonlinear Processes , 2004 .

[69]  Cees Diks,et al.  A test for symmetries of multivariate probability distributions , 1999 .

[70]  O. Scaillet,et al.  A Kolmogorov-Smirnov Type Test for Positive Quadrant Dependence , 2005 .

[71]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[72]  Gy. Terdik,et al.  A New Test of Linearity of Time Series Based on the Bispectrum , 1998 .

[73]  Miguel A. Delgado TESTING SERIAL INDEPENDENCE USING THE SAMPLE DISTRIBUTION FUNCTION , 1996 .

[74]  M. Hinich Testing for dependence in the input to a linear time series model , 1996 .

[75]  P. Robinson Consistent Nonparametric Entropy-Based Testing , 1991 .

[76]  Douglas M. Patterson,et al.  Linear versus Nonlinear Macroeconomies: A Statistical Test , 1989 .

[77]  Jean-Marie Dufour Rank Tests for Serial Dependence , 1981 .

[78]  C. Diks,et al.  Nonparametric Tests for Serial Independence Based on Quadratic Forms , 2005 .

[79]  D. Tj⊘stheim Measures of Dependence and Tests of Independence , 1996 .

[80]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[81]  S. Durlauf Spectral Based Testing of the Martingale Hypothesis , 1991 .

[82]  J. Pinkse A consistent nonparametric test for serial independence , 1998 .

[83]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[84]  T. Rao,et al.  A TEST FOR LINEARITY OF STATIONARY TIME SERIES , 1980 .

[85]  R. Menezes,et al.  Entropy-Based Independence Test , 2006 .

[86]  A Nonparametric Distribution-Free Test for Serial Independence in Stock Returns: A Correction , 1990 .

[87]  A. Escribano,et al.  Information-Theoretic Analysis of Serial Dependence and Cointegration , 1997 .

[88]  D. Rand,et al.  Dynamical Systems and Turbulence, Warwick 1980 , 1981 .

[89]  S. Csörgo Testing for independence by the empirical characteristic function , 1985 .

[90]  Jeffrey S. Racine,et al.  Entropy and predictability of stock market returns , 2002 .

[91]  Harry Joe,et al.  Multivariate concordance , 1990 .

[92]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[93]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[94]  Hans J. Skaug,et al.  A nonparametric test of serial independence based on the empirical distribution function , 1993 .

[95]  Marc Hallin,et al.  Linear serial rank tests for randomness against ARMA alternatives , 1984 .

[96]  P. Robinson,et al.  Tests for Serial Dependence and Other Specification Analysis in Models of Markets in Disequilibrium , 1989 .

[97]  Marcelo Fernandes,et al.  Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes , 2009 .

[98]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[99]  Cees Diks,et al.  Rank-based Entropy Tests for Serial Independence , 2008 .

[100]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[101]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[102]  J. Beran A Goodness‐Of‐Fit Test for Time Series with Long Range Dependence , 1992 .

[103]  Yongmiao Hong,et al.  Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized Spectral Density Approach , 1999 .

[104]  B. E. Wahlen,et al.  A nonparametric measure of independence under a hypothesis of independent components , 1992 .

[105]  Theiler Statistical precision of dimension estimators. , 1990, Physical review. A, Atomic, molecular, and optical physics.