Feedback can improve the second-order coding performance in discrete memoryless channels

For a class of discrete memoryless channels, a simple feedback scheme is shown to improve the second-order term in the normal approximation compared with coding without feedback. Conversely, we provide a new, second-moment-based condition for when feedback does not improve the second-order term.

[1]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[2]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[3]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[4]  Irina Gennad'evna Shevtsova,et al.  A NEW MOMENT-TYPE ESTIMATE OF CONVERGENCE RATE IN THE LYAPUNOV THEOREM ∗ , 2011 .

[5]  Aaron B. Wagner,et al.  Moderate deviation analysis of channel coding: Discrete memoryless case , 2010, 2010 IEEE International Symposium on Information Theory.

[6]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[7]  Anant Sahai,et al.  An upper bound for the block coding error exponent with delayed feedback , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  R. Durrett Probability: Theory and Examples , 1993 .

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Mohamed El Machkouri,et al.  Exact convergence rates in the central limit theorem for a class of martingales , 2004, math/0403385.

[11]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[12]  Claude E. Shannon,et al.  Certain Results in Coding Theory for Noisy Channels , 1957, Inf. Control..

[13]  Vincent Yan Fu Tan,et al.  A Tight Upper Bound for the Third-Order Asymptotics for Most Discrete Memoryless Channels , 2012, IEEE Transactions on Information Theory.

[14]  Baris Nakiboglu,et al.  Sphere-packing bound for block-codes with feedback and finite memory , 2010, 2010 IEEE International Symposium on Information Theory.

[15]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memorylless Channels. I , 1967, Inf. Control..

[16]  Anant Sahai,et al.  An improvement to the Haroutunian bound for anytime coding systems , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[17]  Harikrishna Palaiyanur,et al.  The impact of causality on information-theoretic source and channel coding problems , 2011 .