Compressed Adjacency Matrices: Untangling Gene Regulatory Networks

We present a novel technique-Compressed Adjacency Matrices-for visualizing gene regulatory networks. These directed networks have strong structural characteristics: out-degrees with a scale-free distribution, in-degrees bound by a low maximum, and few and small cycles. Standard visualization techniques, such as node-link diagrams and adjacency matrices, are impeded by these network characteristics. The scale-free distribution of out-degrees causes a high number of intersecting edges in node-link diagrams. Adjacency matrices become space-inefficient due to the low in-degrees and the resulting sparse network. Compressed adjacency matrices, however, exploit these structural characteristics. By cutting open and rearranging an adjacency matrix, we achieve a compact and neatly-arranged visualization. Compressed adjacency matrices allow for easy detection of subnetworks with a specific structure, so-called motifs, which provide important knowledge about gene regulatory networks to domain experts. We summarize motifs commonly referred to in the literature, and relate them to network analysis tasks common to the visualization domain. We show that a user can easily find the important motifs in compressed adjacency matrices, and that this is hard in standard adjacency matrix and node-link diagrams. We also demonstrate that interaction techniques for standard adjacency matrices can be used for our compressed variant. These techniques include rearrangement clustering, highlighting, and filtering.

[1]  Kenta Nakai,et al.  BTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics , 2004, Nucleic Acids Res..

[2]  Amarnath Gupta,et al.  BiologicalNetworks 2.0 - an integrative view of genome biology data , 2010, BMC Bioinformatics.

[3]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004, IEEE Symposium on Information Visualization.

[4]  Tamara Munzner,et al.  GrouseFlocks: Steerable Exploration of Graph Hierarchy Space , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  Frank van Ham,et al.  Using multilevel call matrices in large software projects , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[6]  Pierre Dragicevic,et al.  GeneaQuilts: A System for Exploring Large Genealogies , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  James Abello,et al.  Matrix Zoom: A Visual Interface to Semi-External Graphs , 2004, IEEE Symposium on Information Visualization.

[8]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[9]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[11]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Jos B. T. M. Roerdink,et al.  Visualizing Genome Expression and Regulatory Network Dynamics in Genomic and Metabolic Context , 2008, Comput. Graph. Forum.

[13]  Walter Didimo,et al.  Topology-Driven Force-Directed Algorithms , 2010, GD.

[14]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[15]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[16]  Zhenjun Hu,et al.  VisANT 3.0: new modules for pathway visualization, editing, prediction and construction , 2007, Nucleic Acids Res..

[17]  David Harel,et al.  A Fast Multi-scale Method for Drawing Large Graphs , 2000, Graph Drawing.

[18]  Martin Graham,et al.  Exploring Multiple Trees through DAG Representations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[19]  Petra Mutzel,et al.  Optimal Compaction of Orthogonal Grid Drawings , 1999, IPCO.

[20]  Kim Marriott,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[21]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[22]  Bang Wong,et al.  Pathline: A Tool For Comparative Functional Genomics , 2010, Comput. Graph. Forum.

[23]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[24]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[25]  Daniel W. Archambault,et al.  ImPrEd: An Improved Force‐Directed Algorithm that Prevents Nodes from Crossing Edges , 2011, Comput. Graph. Forum.

[26]  Trevor Paterson,et al.  Visualising Errors in Animal Pedigree Genotype Data , 2011, Comput. Graph. Forum.

[27]  David Harel,et al.  A fast multi-scale method for drawing large graphs , 2000, AVI '00.

[28]  Michael Schroeder,et al.  Unraveling Protein Networks with Power Graph Analysis , 2008, PLoS Comput. Biol..

[29]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[30]  Jean-Daniel Fekete,et al.  Improving the Readability of Clustered Social Networks using Node Duplication , 2008, IEEE Transactions on Visualization and Computer Graphics.

[31]  Chris North,et al.  An Evaluation of Microarray Visualization Tools for Biological Insight , 2004, IEEE Symposium on Information Visualization.

[32]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[33]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[34]  Jens Gerken,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006 .

[35]  Fan Chung Graham,et al.  Drawing Power Law Graphs Using a Local/Global Decomposition , 2007, Algorithmica.

[36]  Ulrik Brandes,et al.  Visualizing Internet Evolution on the Autonomous Systems Level , 2007, GD.

[37]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[38]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[39]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[40]  Benjamin Watson,et al.  Developing and Evaluating Quilts for the Depiction of Large Layered Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[42]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[43]  Heather J. Ruskin,et al.  Techniques for clustering gene expression data , 2008, Comput. Biol. Medicine.