Multiscale Assessment of Binary and Continuous Landcover Variables for MODIS Validation, Mapping, and Modeling Applications

Abstract Validation, mapping, and modeling efforts require accurate methods to transform process rates and ecosystem attributes estimated from small field plots to the 250–1000-m-wide cells used by a new generation of land cover mapping sensors. We provide alternative scale transformations, each with attendant assumptions and limitations. The choice of method depends on spatial characteristics of the land cover variables in question and consequently may vary between biomes or with the intended application. We extend the fractal similarity dimension renormalization method, previously developed for binary maps, to continuous variables. The method can preserve both the mean and the multifractal properties of the image, thereby satisfying a major goal, namely, to provide accurate areal estimates without sacrificing information about within-site variation. The scale transformation enables the multifractal scaling exponents of landscapes or individual spectral bands to be brought in and out of register with each other, thereby opening another dimension upon which to detect the scales at which various land use or terrain processes operate. Alternatively, landscapes can be selectively rescaled to highlight patterns due to particular processes. We recommend geostatistical procedures with which to assess spatial characteristics both within a site and within individual image cells. We recommend that aggregation of fine-grain measurements during validation of the Moderate Resolution Imaging Spectrometer (MODIS) products be based on continuous variables to reduce errors that originate from uncertainties in binary maps.

[1]  W. Cohen,et al.  Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. , 1995 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[3]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  J. W. Gilliam,et al.  Riparian areas as filters for agricultural sediment , 1987 .

[5]  Ricard V. Solé,et al.  Are rainforests self-organized in a critical state? , 1995 .

[6]  S. Levin The problem of pattern and scale in ecology , 1992 .

[7]  Paul M. Rich,et al.  USING GIS TO RECONSTRUCT CANOPY ARCHITECTURE AND MODEL ECOLOGICAL PROCESSES IN PINYON-JUNIPER WOODLANDS , 1993 .

[8]  Y. Kerr,et al.  Scaling up in Hydrology Using Remote Sensing , 1996 .

[9]  B. Milne SPATIAL AGGREGATION AND NEUTRAL MODELS IN , 1992 .

[10]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. II. Simple image models , 1989 .

[11]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[12]  Thomas B. Starr,et al.  Hierarchy Perspectives for Ecological Complexity /T.F.H. Allen and Thomas B. Starr. --. -- , 1982 .

[13]  D. J. Strauss,et al.  The Many Faces of Logistic Regression , 1992 .

[14]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[15]  K. C. Chou,et al.  Multiscale recursive estimation, data fusion, and regularization , 1994, IEEE Trans. Autom. Control..

[16]  R. Gardner,et al.  Quantitative Methods in Landscape Ecology , 1991 .

[17]  P. Burrough Fractal dimensions of landscapes and other environmental data , 1981, Nature.

[18]  Jerry F. Franklin,et al.  Contributions of the Long-Term Ecological Research Program , 1990 .

[19]  R. Allen,et al.  Evapotranspiration and Irrigation Water Requirements , 1990 .

[20]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[21]  Edward Ott,et al.  Particles Floating on a Moving Fluid: A Dynamically Comprehensible Physical Fractal , 1993, Science.

[22]  M. Hill,et al.  The Intensity of Spatial Pattern in Plant Communities , 1973 .

[23]  Thomas S. Pagano,et al.  Moderate Resolution Imaging Spectroradiometer (MODIS) , 1993, Defense, Security, and Sensing.

[24]  S. Running,et al.  Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes , 1998, Ecosystems.

[25]  R. Dubayah Modeling a solar radiation topoclimatology for the Rio Grande River Basin , 1994 .

[26]  Richard A. Bilonick,et al.  The space-time distribution of sulfate deposition in the northeastern United States , 1985 .

[27]  Susan L. Ustin,et al.  Opportunities for Using the EOS Imaging Spectrometers and Synthetic Aperture Radar in Ecological Models , 1991, Ecology.

[28]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[29]  Bruce T. Milne,et al.  Detecting Critical Scales in Fragmented Landscapes , 1997 .

[30]  Alan R. Johnson,et al.  Diffusion in Fractcal Landscapes: Simulations and Experimental Studies of Tenebrionid Beetle Movements , 1992 .

[31]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[32]  Yakov A. Pachepsky,et al.  Estimation of aerodynamic roughness at various spatial scales , 1996 .

[33]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[34]  Steven L. Miller,et al.  Root Gap Dynamics in Lodgepole Pine Forest: Nitrogen Transformations in Gaps of Different Size , 1994 .

[35]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[36]  Alan R. Johnson,et al.  ClaraT: Instructional Software for Fractal Pattern Generation and Analysis , 1999 .

[37]  Peter M. Atkinson,et al.  On estimating measurement error in remotely sensed images with the variogram , 1997 .

[38]  R. Creswick,et al.  Introduction to Renormalization Group Methods in Physics , 1991 .

[39]  Robert V. O'Neill,et al.  Aggregation error in ecological models , 1979 .

[40]  Peter M. Atkinson,et al.  Defining an optimal size of support for remote sensing investigations , 1995, IEEE Trans. Geosci. Remote. Sens..

[41]  Bruce T. Milne,et al.  Motivation and Benefits of Complex Systems Approaches in Ecology , 1998, Ecosystems.

[42]  P. A. Burrough,et al.  Multiscale sources of spatial variation in soil. I: The application of fractal concepts to nested levels of soil variation , 1983 .

[43]  Timothy H. Keitt,et al.  Detection of Critical Densities Associated with Pinon‐Juniper Woodland Ecotones , 1996 .

[44]  Elisa Ercolessi,et al.  The Renormalization Group and Critical Phenomena , 2001 .

[45]  M. Turner,et al.  LANDSCAPE ECOLOGY : The Effect of Pattern on Process 1 , 2002 .

[46]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[47]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Hugh J. Barclay,et al.  Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. , 1998, Tree physiology.

[49]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[50]  Loreto,et al.  Renormalization group approach to the critical behavior of the forest-fire model. , 1995, Physical review letters.

[51]  J. R. Wallis,et al.  Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .

[52]  Harvey Gould,et al.  An Introduction to Computer Simulation Methods: Applications to Physical Systems , 2006 .

[53]  Jensen,et al.  Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment. , 1985, Physical review letters.

[54]  Robert V. O'Neill,et al.  Heterogeneity and spatial hierarchies , 1991 .

[55]  Bruce T. Milne,et al.  Spatial Aggregation and Neutral Models in Fractal Landscapes , 1992, The American Naturalist.

[56]  Robert V. O'Neill,et al.  Aggregation error in nonlinear ecological models , 1983 .

[57]  R. O'Neill A Hierarchical Concept of Ecosystems. , 1986 .

[58]  Mogens H. Jensen,et al.  Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment. , 1985 .

[59]  Sergey V. Buldyrev,et al.  Scaling and universality in animate and inanimate systems , 1996 .

[60]  J. Wilson,et al.  Wet deposition in the northeastern United States , 1980 .

[61]  Bruce T. Milne,et al.  Lessons from applying fractal models to landscape patterns , 1991 .

[62]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[63]  Y. Pachepsky,et al.  Fractal modeling of airborne laser altimetry data , 1997 .

[64]  Mark A. Friedl,et al.  Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE , 1995 .

[65]  B. Milne Measuring the fractal geometry of landscapes , 1988 .

[66]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[67]  Frank W. Davis,et al.  Viewing Geometry of AVHRR Image Composites Derived Using Multiple Criteria , 1997 .

[68]  Steven W. Running,et al.  Testing scale dependent assumptions in regional ecosystem simulations , 1994 .

[69]  S. Hurlbert Pseudoreplication and the Design of Ecological Field Experiments , 1984 .

[70]  J. Franklin,et al.  The long‐term ecological research program , 1988 .