Non‐linear dynamic earth dam–foundation interaction using a BE–FE method
暂无分享,去创建一个
A general, rigorous, coupled Boundary Element–Finite Element (BE–FE) formulation is presented for non-linear seismic soil–structure interaction in two dimensions. The BE–FE method is applied to investigate the inelastic response of earth dams to transient SV waves. The dam body, consisting of heterogeneous materials modelled with a simple non-linear hysteretic model, is discretized with finite elements, whereas the elastic half-space is discretized with boundary elements. The study focuses on the combined effects of the material non-linearity and foundation flexibility. The results show the significant effect of the foundation flexibility in reducing the response through radiation of energy. For excitations with peak ground accelerations from 0·2gto 0·6g, the crest acceleration amplification ranges from 2·5 to 1·4 and seems to be comparable with field observations and results from other studies. Deamplification increasing with strain is reported at the lower part of the dam. The method is computationally powerful and can be used for efficient non-linear analysis of complex soil–structure systems. The efficiency of the BE–FE method allows further improvements with incorporation of a more advanced constitutive model and consideration of the generation and dissipation of pore-water pressures during the earthquake. © 1998 John Wiley & Sons, Ltd.