Nonmetric multidimensional scaling: Recovery of metric information

The degree of metric determinancy afforded by nonmetric multidimensional scaling was investigated as a function of the number of points being scaled, the true dimensionality of the data being scaled, and the amount of error contained in the data being scaled. It was found 1) that if the ratio of the degrees of freedom of the data to that of the coordinates is sufficiently large then metric information is recovered even when random error is present; and 2) when the number of points being scaled increases the stress of the solution increases even though the degree of metric determinacy increases.