Optical coherence gratings and lattices.

We introduce a class of partially coherent temporal/spatial sources, optical coherence gratings/lattices that have a Gaussian intensity profile and statistically stationary/homogeneous, periodic temporal/spatial coherence properties. We show that temporal coherence gratings generate partially coherent pulses with periodic spectra, whereas spatial coherence lattices yield far-zone output in the form of periodic lattices of highly directional beams.

[1]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[2]  F. Gori,et al.  Difference of cross-spectral densities. , 2014, Optics letters.

[3]  Jari Turunen,et al.  Finite-elementary-source model for partially coherent radiation. , 2006, Optics express.

[4]  Olga Korotkova,et al.  Light sources generating far fields with tunable flat profiles. , 2012, Optics letters.

[5]  S. Ponomarenko,et al.  A class of partially coherent beams carrying optical vortices. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[7]  F. Gori,et al.  Devising genuine spatial correlation functions. , 2007, Optics Letters.

[8]  O. Korotkova,et al.  The control of pulse profiles with tunable temporal coherence , 2014 .

[9]  G P Agrawal,et al.  Energy spectrum of a nonstationary ensemble of pulses. , 2004, Optics letters.

[10]  Franco Gori,et al.  Modal expansion for J0-correlated Schell-model sources , 1987 .

[11]  Olga Korotkova,et al.  Random sources generating ring-shaped beams. , 2013, Optics letters.

[12]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[13]  Olga Korotkova,et al.  Cosine-Gaussian Schell-model sources. , 2013, Optics letters.

[14]  Michael Cada,et al.  Dark and antidark diffraction-free beams. , 2007, Optics letters.

[15]  F. Gori,et al.  Genuine cross-spectral densities and pseudo-modal expansions. , 2009, Optics letters.

[16]  Toni Saastamoinen,et al.  Propagation characteristics of partially coherent beams with spatially varying correlations. , 2011, Optics letters.

[17]  S. Ponomarenko,et al.  Twisted Gaussian Schell-model solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Emil Wolf,et al.  Partially coherent vortex beams with a separable phase. , 2003, Optics letters.

[19]  E. Wolf,et al.  Physical significance of complete spatial coherence of optical fields , 2005 .

[20]  Sergey A Ponomarenko Complex Gaussian representation of statistical pulses. , 2011, Optics express.

[21]  Olga Korotkova,et al.  Random sources for rectangular far fields. , 2014, Optics letters.

[22]  O. Korotkova,et al.  Cosine-Gaussian correlated Schell-model pulsed beams. , 2014, Optics express.

[23]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .