Comparing shapes of genus-zero surfaces
暂无分享,去创建一个
[1] U. Pinkall,et al. Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.
[2] Ron Kimmel,et al. On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Shing-Tung Yau,et al. Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..
[4] Lipman Bers,et al. Uniformization, Moduli, and Kleinian Groups , 1972 .
[5] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[6] Kenneth Stephenson,et al. Introduction to Circle Packing: The Theory of Discrete Analytic Functions , 2005 .
[7] Guillermo Sapiro,et al. Conformal Surface Parameterization for Texture Mapping , 1999 .
[8] Feng Luo. COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .
[9] B. Rodin,et al. The convergence of circle packings to the Riemann mapping , 1987 .
[10] Monica K. Hurdal,et al. Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.
[11] P. Koehl,et al. Landmark-free geometric methods in biological shape analysis , 2015, Journal of The Royal Society Interface.
[12] Patrice Koehl,et al. Automatic Alignment of Genus-Zero Surfaces , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[14] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[15] Patrice Koehl,et al. How round is a protein? Exploring protein structures for globularity using conformal mapping , 2014, Front. Mol. Biosci..
[16] Thomas A. Funkhouser,et al. Algorithms to automatically quantify the geometric similarity of anatomical surfaces , 2011, Proceedings of the National Academy of Sciences.
[17] O. Schramm,et al. On the convergence of circle packings to the Riemann map , 1996 .
[18] Shing-Tung Yau,et al. Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..