Polynomial function intervals for floating-point software verification
暂无分享,去创建一个
[1] Peter Amey,et al. Correctness By Construction: Better Can Also Be Cheaper , 2002 .
[2] Nedialko S. Nedialkov,et al. On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..
[3] Stefan Ratschan,et al. Efficient solving of quantified inequality constraints over the real numbers , 2002, TOCL.
[4] Eric Goubault,et al. Static Analysis of Numerical Algorithms , 2006, SAS.
[5] Randy Johnson,et al. Engineering the Tokeneer Enclave Protection Software , 2006 .
[6] Flemming Nielson,et al. Principles of Program Analysis , 1999, Springer Berlin Heidelberg.
[7] Guillaume Melquiond,et al. Certification of bounds on expressions involving rounded operators , 2007, TOMS.
[8] Marcel Toussaint. Ada in Europe , 1994, Lecture Notes in Computer Science.
[9] Guillaume Melquiond,et al. Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives , 2012, CPP.
[10] Nikolai Kosmatov,et al. Frama-C: A software analysis perspective , 2015, Formal Aspects of Computing.
[11] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[12] Frédéric Benhamou,et al. Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.
[13] John G. P. Barnes,et al. High Integrity Software - The SPARK Approach to Safety and Security , 2003 .
[14] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[15] John Barnes. The SPARK way to correctness is via abstraction , 2000, ALET.
[16] E. Kaucher. Interval Analysis in the Extended Interval Space IR , 1980 .
[17] Lawrence C. Paulson,et al. MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.
[18] Jean-Christophe Filliâtre,et al. Why3 - Where Programs Meet Provers , 2013, ESOP.
[19] Eric Goubault,et al. Static Analysis-Based Validation of Floating-Point Computations , 2003, Numerical Software with Result Verification.
[20] Sylvie Boldo. Floats & Ropes : a case study for formal numerical program veri cation ? , 2009 .
[21] Patrick Cousot,et al. The ASTREÉ Analyzer , 2005, ESOP.
[22] Sylvie Boldo. How to Compute the Area of a Triangle: A Formal Revisit , 2013, 2013 IEEE 21st Symposium on Computer Arithmetic.
[23] Martin Berz,et al. Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..
[24] Eric Goubault,et al. Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software , 2009, FMICS.
[25] Guillaume Melquiond,et al. Combining Coq and Gappa for Certifying Floating-Point Programs , 2009, Calculemus/MKM.
[26] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[27] Martin Fränzle,et al. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure , 2007, J. Satisf. Boolean Model. Comput..
[28] Natarajan Shankar,et al. PVS: A Prototype Verification System , 1992, CADE.
[29] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[30] Arnold Neumaier,et al. Taylor Forms—Use and Limits , 2003, Reliab. Comput..
[31] A Davis Timothy,et al. アルゴリズム907: 回路シミュレーション問題のための直接疎ソルバ,KLU , 2011 .
[32] Michal Konečný,et al. Polynomial Function Enclosures and Floating Point Software Verification ? , 2008 .
[33] Sylvie Boldo,et al. Floats and Ropes: A Case Study for Formal Numerical Program Verification , 2009, ICALP.