Dynamical Analysis of the Generalized Lorenz Systems

In this paper, global attractive sets of the generalized Lorenz system are studied according to Lyapunov stability theory and optimization theory. The method of constructing Lyapunov functions applied to the former chaotic dynamical systems is not applicable to the generalized Lorenz system. We overcome this difficulty by adding a cross term to the Lyapunov functions of the generalized Lorenz system.

[1]  Gennady A. Leonov,et al.  The tricomi problem for the Shimizu-Morioka dynamical system , 2012 .

[2]  Gennady A. Leonov,et al.  Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .

[3]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[4]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[5]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[6]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[7]  Da Lin,et al.  The dynamical analysis of a new chaotic system and simulation , 2014 .

[8]  Pei Yu,et al.  A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family , 2009 .

[9]  H. Nijmeijer,et al.  An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .

[10]  Fuchen Zhang,et al.  Boundedness solutions of the complex Lorenz chaotic system , 2014, Appl. Math. Comput..

[11]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[12]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[13]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[14]  Gennady A. Leonov,et al.  Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .

[15]  Gennady A. Leonov,et al.  General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .

[16]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[17]  Yeong-Jeu Sun,et al.  A simple observer design of the generalized Lorenz chaotic systems , 2010 .

[18]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[19]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[20]  Xingyuan Wang,et al.  Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching , 2011 .

[21]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[22]  Gennady A. Leonov,et al.  Existence criterion of homoclinic trajectories in the Glukhovsky–Dolzhansky system , 2015 .

[23]  Chunlai Mu,et al.  On the Boundness of Some solutions of the Lü System , 2012, Int. J. Bifurc. Chaos.

[24]  Fuchen Zhang,et al.  Bounds for a new chaotic system and its application in chaos synchronization , 2011 .

[25]  Nikolay V. Kuznetsov,et al.  On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..