Recent development of vortex method in incompressible viscous bluff body flows

Vortex methods have been alternative tools of finite element and finite difference methods for several decades. This paper presents a brief review of vortex method development in the last decades and introduces efficient vortex methods developed for high Reynolds number bluff body flows and suitable for running on parallel computer architectures. Included in this study are particle strength exchange methods, core-spreading method, deterministic particle method and hybrid vortex methods. Combined with conservative methods, vortex methods can comprise the most available tools for simulations of three-dimensional complex bluff body flows at high Reynolds numbers.

[1]  Georges-Henri Cottet,et al.  Blending Finite-Difference and Vortex Methods for Incompressible Flow Computations , 2000, SIAM J. Sci. Comput..

[2]  Iraj Mortazavi,et al.  The Simulation of Vortex Dynamics downstream of a Plate Separator using a Vortex Finite-Element Method , 2001 .

[3]  Guido Morgenthal,et al.  An immersed interface method for the vortex-in-cell algorithm , 2007 .

[4]  O. Tutty,et al.  Construction and validation of a discrete vortex method for the two-dimensional incompressible Navier-Stokes equations , 1994 .

[5]  Guirong Liu,et al.  Numerical simulation of flow past a rotationally oscillating cylinder , 2001 .

[6]  Louis F. Rossi,et al.  Resurrecting Core Spreading Vortex Methods: A New Scheme that is Both Deterministic and Convergent , 1996, SIAM J. Sci. Comput..

[7]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[8]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[9]  A. Majda,et al.  Rates of convergence for viscous splitting of the Navier-Stokes equations , 1981 .

[10]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[11]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[12]  M. Akbari,et al.  Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method , 2003 .

[13]  A numerical study of bluff body aerodynamics in high Reynolds number flows by viscous vortex element method , 1998 .

[14]  T. Akamatsu,et al.  Viscous flow simulation using the discrete vortex model: the diffusion velocity method , 1991 .

[15]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[16]  A. Leonard Vortex methods for flow simulation , 1980 .

[17]  S. Shankar,et al.  A New Diffusion Procedure for Vortex Methods , 1996 .

[18]  Petros Koumoutsakos,et al.  Vortex Methods with Spatially Varying Cores , 2000 .

[19]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[20]  Andrew J. Majda,et al.  Vortex methods. I. Convergence in three dimensions , 1982 .

[21]  P. Koumoutsakos,et al.  Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate , 1996, Journal of Fluid Mechanics.

[22]  M. Akbari,et al.  SIMULATION OF THE FLOW OVER ELLIPTIC AIRFOILS OSCILLATING AT LARGE ANGLES OF ATTACK , 2000 .

[23]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[24]  T. Uchiyama,et al.  Numerical prediction of a plume diffusion field around a circular cylinder by the particle method , 2003 .

[25]  Sebastien Rouvreau,et al.  Two-dimensional viscous vortex flow around a circular cylinder , 2001 .

[26]  Chien-Cheng Chang,et al.  A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method , 1991, Journal of Fluid Mechanics.

[27]  Y. Chew,et al.  NUMERICAL INVESTIGATION OF A ROTATIONALLY OSCILLATING CYLINDER IN MEAN FLOW , 2001 .

[28]  Peter S. Bernard A deterministic vortex sheet method for boundary layer flow , 1995 .

[29]  H. O. Nordmark Deterministic high order vortex methods for the 2-d navier - stokes equation with rezoning , 1996 .

[30]  Jens Honore Walther,et al.  An influence matrix particle-particle particle-mesh algorithm with exact particle-particle correction , 2003 .

[31]  Dalia Fishelov,et al.  A new vortex scheme for viscous flow , 1990 .