Spent potliner treatment process optimization using a MADS algorithm

Abstract In this paper, the general problem of chemical process optimization defined by a computer simulation is formulated. It is generally a nonlinear, non-convex, non-differentiable optimization problem over a disconnected set. A brief overview of popular optimization methods from the chemical engineering literature is presented. The recent mesh adaptive direct search (MADS) algorithm is detailed. It is a direct search algorithm, so it uses only function values and does not compute or approximate derivatives. This is useful when the functions are noisy, costly or undefined at some points, or when derivatives are unavailable or unusable. In this work, the MADS algorithm is used to optimize a spent potliners (toxic wastes from aluminum production) treatment process. In comparison with the best previously known objective function value, a 37% reduction is obtained even if the model failed to return a value 43% of the time.

[1]  Pu Li,et al.  Simulated annealing for the optimization of batch distillation processes , 2000 .

[2]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[3]  I. Coope,et al.  Frame Based Methods for Unconstrained Optimization , 2000 .

[4]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[5]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[6]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[7]  Jae Wook Ko,et al.  A stochastic approach to global optimization of chemical processes , 1999 .

[8]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[9]  Juan M. Zamora,et al.  Continuous global optimization of structured process systems models , 1998 .

[10]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[11]  Robert Michael Lewis,et al.  On the Local Convergence of Pattern Search , 2003, SIAM J. Optim..

[12]  Warren D. Seider,et al.  Process design principles : synthesis, analysis, and evaluation , 1999 .

[13]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[14]  John E. Dennis,et al.  Optimization Using Surrogate Objectives on a Helicopter Test Example , 1998 .

[15]  CHARLES AUDET,et al.  Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..

[16]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[17]  Mark A. Abramson,et al.  Second-Order Behavior of Pattern Search , 2005, SIAM J. Optim..

[18]  Parviz Moin,et al.  Suppression of vortex-shedding noise via derivative-free shape optimization , 2004 .

[19]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[20]  Charles Audet,et al.  Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm , 2004 .

[21]  Virginia Torczon,et al.  Pattern Search Methods For Nonlinear Optimization , 1995 .

[22]  Jamal Chaouki,et al.  Update on Spent Potliners Treatments: Kinetics of Cyanides Destruction at High Temperature , 2004 .

[23]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[24]  Charles Audet,et al.  Optimisation et intégration à la production des stratégies de maintenance , 2003 .

[25]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[26]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[27]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[28]  A. Despujols Méthodes d’optimisation des stratégies de maintenance , 2005, Maintenance.

[29]  Royce Bowden,et al.  Simulation optimization research and development , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[30]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[31]  B. Lin,et al.  Tabu search algorithm for chemical process optimization , 2004, Comput. Chem. Eng..

[32]  J. Dennis,et al.  Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System , 2001 .

[33]  Charles Audet,et al.  Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..

[34]  George H. Staus,et al.  Interior point SQP strategies for large-scale, structured process optimization problems , 1999 .