Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities

Thermophotovoltaic converters based on In0.69Ga0.31As/InAs0.34P0.66 have been fabricated, characterized experimentally, and modeled. Good device performance has been achieved with an open-circuit voltage of 1.46 V, short-circuit current density of 1.06 A/cm2, and a fill factor of 71.3% for a four-junction cell under an optical power density of 3.4 W/cm2. Key material parameters have been extracted from measured device characteristics, providing a detailed quantitative understanding of the dependence of device performance on the electro-optical properties of the InGaAs/InAsP material system. Extracted minority carrier lifetimes of 106 ns in the p-type base and 0.3 ns in the n-type emitter regions were obtained, limited by radiative and Auger recombination, respectively. The recombination velocity for the InGaAs/InAsP interface is found to be below 2000 cm/s. The parameter analysis provides guidance for the design of a high-efficiency monolithically integrated module for use under high illumination intensities.

[1]  Richard K. Ahrenkiel,et al.  Recombination lifetimes in undoped, low-band gap InAsyP1−y/InxGa1−xAs double heterostructures grown on InP substrates , 2001 .

[2]  M. L. Lovejoy,et al.  Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs , 1995 .

[3]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[4]  S. D. Link,et al.  Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control , 2004, IEEE Transactions on Electron Devices.

[5]  Timothy J. Coutts,et al.  An overview of thermophotovoltaic generation of electricity , 1999 .

[6]  David M. Wilt,et al.  MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion , 2003 .

[7]  J. Ward,et al.  Thermophotovoltaic and photovoltaic conversion at high-flux densities , 1999 .

[8]  M. Wanlass,et al.  Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates , 2002 .

[9]  M. Hudait,et al.  0.6-eV bandgap In/sub 0.69/Ga/sub 0.31/As thermophotovoltaic devices grown on InAs/sub y/P/sub 1-y/ step-graded buffers by molecular beam epitaxy , 2003, IEEE Electron Device Letters.

[10]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[11]  Edward J. Gratrix,et al.  Optical coatings for thermophotovoltaic spectral control. , 2006 .

[12]  Michael K. Connors,et al.  Monolithically series-interconnected GaInAsSb/AlGaAsSb/GaSb thermophotovoltaic devices with an internal backsurface reflector formed by wafer bonding , 2003 .

[13]  J. Campbell,et al.  Deep donor-acceptor pair recombination in InGaAs-based heterostructures grown on InP substrates , 2005 .

[14]  J. Hills,et al.  20% Efficient InGaAs/InPAs Thermophotovoltaic Cells , 2003 .

[15]  G. W. Charache,et al.  High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices , 1999 .

[16]  V. L. Teofilo,et al.  Thermophotovoltaic Energy Conversion for Space Applications , 2006 .

[17]  R. Gutmann,et al.  InGaAsSb thermophotovoltaic diode: Physics evaluation , 1999 .

[18]  M. Wanlass,et al.  Auger recombination in low-band-gap n-type InGaAs , 2001 .