Positivity of twisted relative pluricanonical bundles and their direct images

Our main goal in this article is to establish a quantitative version of the positivity properties of twisted relative pluricanonical bundles and their direct images. The notion of "singular Hermitian metric" on vector bundles (together with an appropriate definition of positivity of the associated curvature) plays a major role here, and its properties are studied via a version of Ohsawa-Takegoshi extension theorem. Part of this article is based on the joint work of the first named author with Bo Berndtsson, and it can be seen as an expanded and updated version of it.

[1]  O. Fujino CORRIGENDUM TO \DIRECT IMAGES OF RELATIVE PLURICANONICAL BUNDLES" , 2016 .

[2]  D. Matsushita HIGHER DIRECT IMAGES OF DUALIZING SHEAVES OF , 2016 .

[3]  S. Takayama Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles , 2016 .

[4]  Junyan Cao,et al.  Kodaira dimension of algebraic fiber spaces over abelian varieties , 2015, 1504.01095.

[5]  J. Demailly On the Cohomology of Pseudoeffective Line Bundles , 2014, 1401.5432.

[6]  J. Demailly Structure Theorems for Compact Kähler Manifolds with Nef Anticanonical Bundles , 2015 .

[7]  M. Popa,et al.  On direct images of pluricanonical bundles , 2014, 1405.6125.

[8]  Xiangyu Zhou,et al.  A solution of an $L^{2}$ extension problem with optimal estimate and applications , 2013, 1310.7169.

[9]  Z. Blocki,et al.  Suita conjecture and the Ohsawa-Takegoshi extension theorem , 2013 .

[10]  Hossein Raufi The Nakano vanishing theorem and a vanishing theorem of Demailly-Nadel type for holomorphic vector bundles , 2012, 1212.4417.

[11]  Hossein Raufi Singular hermitian metrics on holomorphic vector bundles , 2012, 1211.2948.

[12]  B. Berndtsson,et al.  Quantitative extensions of pluricanonical forms and closed positive currents , 2010, Nagoya Mathematical Journal.

[13]  B. Berndtsson An introduction to things \overline{∂} , 2010 .

[14]  J. Demailly Structure theorems for projective and Kähler varieties , 2010 .

[15]  A. Höring Positivity of direct image sheaves a geometric point of view , 2010 .

[16]  B. Berndtsson,et al.  Bergman kernels and subadjunction , 2010, 1002.4145.

[17]  Shigeetj Iitaka Birational Geometry of Algebraic Varieties , 2010 .

[18]  Y. Kawamata Semipositivity theorem for reducible algebraic fiber spaces , 2009, 0911.1670.

[19]  Christophe Mourougane,et al.  Extension of twisted Hodge metrics for Kähler morphisms , 2008, 0809.3221.

[20]  Christophe Mourougane,et al.  Hodge metrics and the curvature of higher direct images , 2007, 0707.3551.

[21]  H. Tsuji Extension of log pluricanonical forms from subvarieties , 2007, 0709.2710.

[22]  J. Kollár Kodaira's canonical bundle formula and adjunction , 2007 .

[23]  Mihai Păun,et al.  Siu’s invariance of plurigenera: a one-tower proof , 2007 .

[24]  H. Tsuji Canonical singular hermitian metrics on relative canonical bundles , 2007, 1008.1466.

[25]  H. Tsuji Curvature semipositivity of relative pluricanonical systems , 2007, math/0703729.

[26]  B. Berndtsson,et al.  Bergman kernels and the pseudoeffectivity of relative canonical bundles , 2007, math/0703344.

[27]  J. Demailly Analytic Methods in Algebraic Geometry , 2007 .

[28]  J. Demailly Regularization of closed positive currents and Intersection Theory , 2007 .

[29]  M. Nakamaye,et al.  Restricted volumes and base loci of linear series , 2006, math/0607221.

[30]  J. Kollár Book Review: Positivity in algebraic geometry. I--II , 2006 .

[31]  B. Berndtsson Curvature of vector bundles associated to holomorphic fibrations , 2005, math/0511225.

[32]  O. Fujino Higher direct images of log canonical divisors , 2004 .

[33]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[34]  F. Campana Orbifolds, special varieties and classification theory , 2004 .

[35]  N. Nakayama Zariski-decomposition and abundance , 2004 .

[36]  M. Nakamaye,et al.  Asymptotic invariants of base loci , 2003, math/0308116.

[37]  Y. Siu Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type , 2002 .

[38]  Y. Kawamata On algebraic fiber spaces , 2001, math/0107160.

[39]  Michael Schneider,et al.  PSEUDO-EFFECTIVE LINE BUNDLES ON COMPACT KÄHLER MANIFOLDS , 2000, math/0006205.

[40]  J. Kollár,et al.  Birational Geometry of Algebraic Varieties: Index , 1998 .

[41]  Michael Schneider Singular hermitian metrics on vector bundles , 1998 .

[42]  Y. Kawamata Subadjunction of log canonical divisors, II , 1997, alg-geom/9712014.

[43]  Eckart Viehweg,et al.  Quasi-projective moduli for polarized manifolds , 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[44]  T. Ohsawa ON THE EXTENSION OF L2 HOLOMORPHIC FUNCTIONS IV: A NEW DENSITY CONCEPT , 1994 .

[45]  J. Demailly Regularization of closed positive currents of type (1,1) by the flow of a Chern connection , 1994 .

[46]  T. Ohsawa,et al.  On the extension ofL2 holomorphic functions , 1987 .

[47]  N. Nakayama Hodge filtrations and the higher direct images of canonical sheaves , 1986 .

[48]  J. Kollár Higher direct images of dualizing sheaves. II , 1986 .

[49]  E. Viehweg Weak Positivity and the Additivity of the Kodaira Dimension for Certain Fibre Spaces , 1983 .

[50]  Y. Kawamata Kodaira dimension of algebraic fiber spaces over curves , 1982 .

[51]  J. Demailly Estimations $\mathrm {L}^2$ pour l’opérateur $\bar{\partial }$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète , 1982 .

[52]  T. Fujita On Kähler fiber spaces over curves , 1978 .

[53]  Gerd Fischer,et al.  Complex Analytic Geometry , 1976 .

[54]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[55]  P. Griffiths Periods of integrals on algebraic manifolds, III (some global differential-geometric properties of the period mapping) , 1970 .

[56]  M. Narasimhan,et al.  Manifolds with ample canonical class , 1968 .