On the measurement of qubits

We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems (“qubits”). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices which are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.

[1]  B. Terhal Detecting quantum entanglement , 2001, Theor. Comput. Sci..

[2]  Los Alamos National Laboratory,et al.  Exploring Hilbert space: Accurate characterization of quantum information , 2001, quant-ph/0108088.

[3]  P. Jessen,et al.  Measuring the quantum state of a large angular momentum. , 2001, Physical review letters.

[4]  M. Ježek,et al.  Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.

[5]  A. Berglund Quantum coherence and control in one- and two-photon optical systems , 2000, quant-ph/0010001.

[6]  B. Terhal On the Additivity of the Entanglement of Formation , 2000, quant-ph/0003038.

[7]  Z. Hradil,et al.  Reconstruction of the spin state , 1999, quant-ph/9911068.

[8]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[9]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[10]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[11]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[12]  Andrew G. White,et al.  Ultra-bright source of polarization-entangled photons , 1998, quant-ph/9810003.

[13]  M Gray,et al.  Optical homodyne tomography of information carrying laser beams. , 1998, Optics express.

[14]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[15]  D. Leibfried,et al.  Shadows and Mirrors: Reconstructing Quantum States of Atom Motion , 1998 .

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  E. Merzbacher,et al.  Quantum Mechanics, 3rd Edition , 1997 .

[18]  Sze M. Tan,et al.  An inverse problem approach to optical homodyne tomography , 1997 .

[19]  S. Schiller,et al.  Measurement of the quantum states of squeezed light , 1997, Nature.

[20]  C. Kurtsiefer,et al.  Measurement of the Wigner function of an ensemble of helium atoms , 1997, Nature.

[21]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[22]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[23]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[24]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[25]  Walmsley,et al.  Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. , 1995, Physical review letters.

[26]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[27]  William H. Press,et al.  Numerical recipes in Fortran 77 : the art of scientificcomputing. , 1992 .

[28]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[29]  Experimentally determined density matrices for H(n=3) formed in H+-He collisions from 20 to 100 keV. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[30]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[31]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[32]  James Napolitano,et al.  Experiments in Modern Physics , 1966 .

[33]  A. Messiah Quantum Mechanics , 1961 .

[34]  P. Morse,et al.  Methods of theoretical physics , 1955 .