DEL-sequents for progression

Dynamic Epistemic Logic (DEL) deals with the representation and the study in a multi-agent setting of knowledge and belief change. It can express in a uniform way epistemic statements about: 1. what is true about an initial situation 2. what is true about an event occurring in this situation 3. what is true about the resulting situation after the event has occurred. We axiomatize within the DEL framework what we can infer about (iii) given (i) and (ii). Given three formulas φ,φ' and φ" describing respectively (i), (ii) and (iii), we also show how to build a formula φ × φ' which captures all the information which can be inferred about (iii) from φ and φ'. We show how our results extend to other modal logics than K. In our proofs and definitions, we resort to a large extent to the normal form formulas for modal logic originally introduced by Kit Fine. In a companion paper (Aucher, 2012), we axiomatize what we can infer about (ii) given (i) and (iii), and what we can infer about (i) given (ii) and (iii), and show how to build two formulas φ ⦸ φ" and φ' ⊘ φ" which capture respectively all the information which can be inferred about (ii) from φ and φ", and all the information which can be inferred about (i) from φ' and φ".

[1]  Lawrence S. Moss,et al.  The Logic of Public Announcements and Common Knowledge and Private Suspicions , 1998, TARK.

[2]  R. Van Der Meyden Synthesis from Knowledge-Based Specifications CONCUR'98 , 1998 .

[3]  Mehrnoosh Sadrzadeh,et al.  Algebra and Sequent Calculus for Epistemic Actions , 2005, LCMAS.

[4]  A. Baltag,et al.  Logics for epistemic programs , 2004 .

[5]  Barteld Kooi,et al.  Dynamic Epistemic Logic , 2013 .

[6]  Joseph Y. Halpern,et al.  Knowledge and common knowledge in a distributed environment , 1984, JACM.

[7]  Lauretta O. Osho,et al.  Axiomatic Basis for Computer Programming , 2013 .

[8]  Guillaume Aucher,et al.  BMS revisited , 2009, TARK '09.

[9]  Johan van Benthem,et al.  Dynamic logic for belief revision , 2007, J. Appl. Non Class. Logics.

[10]  Kit Fine,et al.  Normal forms in modal logic , 1975, Notre Dame J. Formal Log..

[11]  François Schwarzentruber,et al.  Tableau Method and NEXPTIME-Completeness of DEL-Sequents , 2011, Electron. Notes Theor. Comput. Sci..

[12]  Alexandru Baltag,et al.  Conditional Doxastic Models: A Qualitative Approach to Dynamic Belief Revision , 2006, WoLLIC.

[13]  Alexandru Baltag,et al.  Probabilistic dynamic belief revision , 2008, Synthese.

[14]  Tim French,et al.  Simulation and Information: Quantifying over Epistemic Events , 2009, KRAMAS.

[15]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[16]  Jan van Eijck,et al.  Logics of communication and change , 2006, Inf. Comput..

[17]  Fenrong Liu,et al.  Changing for the better : preference dynamics and agent diversity , 2008 .

[18]  M. Shanahan Solving the frame problem , 1997 .

[19]  Johan van Benthem,et al.  Merging Frameworks for Interaction , 2009, J. Philos. Log..

[20]  Orna Kupferman,et al.  Church's Problem Revisited , 1999, Bulletin of Symbolic Logic.

[21]  James R. Bell,et al.  A new method for determining linear precedence functions for precedence grammars , 1969, CACM.

[22]  Guillaume Aucher,et al.  Characterizing Updates in Dynamic Epistemic Logic , 2010, KR.

[23]  Guillaume Aucher,et al.  Interpreting an action from what we perceive and what we expect , 2007, J. Appl. Non Class. Logics.

[24]  Barteld P. Kooi,et al.  Expressivity and completeness for public update logics via reduction axioms , 2007, J. Appl. Non Class. Logics.

[25]  Johan van Benthem,et al.  McCarthy variations in a modal key , 2011, Artif. Intell..

[26]  Johan van Benthem,et al.  Dynamic Update with Probabilities , 2009, Stud Logica.

[27]  Mehrnoosh Sadrzadeh,et al.  Epistemic Actions as Resources , 2007, J. Log. Comput..

[28]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[29]  Moshe Y. Vardi,et al.  L O ] 2 4 Ju l 2 01 3 Synthesis from Knowledge-Based Specifications ⋆ , 2014 .

[30]  Andreas Herzig,et al.  From Situation Calculus to Dynamic Epistemic Logic , 2011, J. Log. Comput..

[31]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[32]  Guillaume Aucher,et al.  DEL-sequents for regression and epistemic planning , 2012, J. Appl. Non Class. Logics.

[33]  Guillaume Aucher,et al.  A Combined System for Update Logic and Belief Revision , 2004, PRIMA.

[34]  Hans van Ditmarsch,et al.  Prolegomena to Dynamic Logic for Belief Revision , 2005, Synthese.

[35]  Lawrence S. Moss,et al.  FINITE MODELS CONSTRUCTED FROM CANONICAL FORMULAS , 2007, J. Philos. Log..

[36]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[37]  H. V. Ditmarsch,et al.  Two mischievous dynamic consequence relations , 2010 .