SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 본 논문에서는 SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거 된 정상 데이터로 복원하는 방법에 대해서 논한다. 그리고 저해상도의 이미지를 고해상도의 이미지로 복원함으로써 본 논문의 방법론이 어떻게 실용적으로 적용되는지에 대해서 다룬다.