Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates

Recently, research on hybrid organometal halide perovskites for photovoltaic applications has delivered impressive growth in power conversion effi ciencies (PCEs) with a current certifi ed record of 17.9% and growing. [ 1–6 ] Key advantages of perovskites devices, together with high PCEs, are represented by the ease of the solution processing steps and their low temperature (<140 °C). [ 7,8 ] These values enable the fabrication on plastic substrates, [ 9 ] compatible with a continuous roll-toroll manufacturing which can potentially contribute to dramatically lower the production costs of large area modules. [ 10 ] Moreover, fl exible devices can also be conformed to curved surfaces to enhance power conversion densities. [ 11,12 ]

[1]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[2]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[3]  Michael Saliba,et al.  Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites , 2014 .

[4]  Andrea Reale,et al.  Fully plastic dye solar cell devices by low-temperature UV-irradiation of both the mesoporous TiO2 photo- and platinized counter-electrode , 2013 .

[5]  T. Brown,et al.  Taking Temperature Processing Out of Dye‐Sensitized Solar Cell Fabrication: Fully Laser‐Manufactured Devices , 2014 .

[6]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[7]  M. Grätzel,et al.  Sub‐Nanometer Conformal TiO2 Blocking Layer for High Efficiency Solid‐State Perovskite Absorber Solar Cells , 2014, Advanced materials.

[8]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[9]  Kun Zhang,et al.  Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells , 2014 .

[10]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[11]  J. Durrant,et al.  Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns , 2014, Advanced materials.

[12]  A. Di Carlo,et al.  Progress in flexible dye solar cell materials, processes and devices , 2014 .

[13]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[14]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[15]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[17]  Wmm Erwin Kessels,et al.  Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells , 2012 .

[18]  Aldo Di Carlo,et al.  High efficiency photovoltaic module based on mesoscopic organometal halide perovskite , 2016 .

[19]  M. Batzill,et al.  Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films , 2014, Scientific Reports.

[20]  Aldo Di Carlo,et al.  High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer , 2014 .

[21]  Rajan Jose,et al.  A perspective on the production of dye-sensitized solar modules , 2014 .

[22]  Hongxian Fan,et al.  Photodegradation of cellulose under UV light catalysed by TiO2 , 2011 .

[23]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[24]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[25]  A. Reale,et al.  Series-Connection Designs for Dye Solar Cell Modules , 2011, IEEE Transactions on Electron Devices.

[26]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[27]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[28]  A. Di Carlo,et al.  Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells , 2014 .

[29]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[30]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[31]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[32]  Bryce S. Richards,et al.  Single-material TiO2 double-layer antireflection coatings , 2003 .

[33]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[34]  G. Qin,et al.  Enhancing the efficiency of TiO2–perovskite heterojunction solar cell via evaporating Cs2CO3 on TiO2 , 2014 .

[35]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[36]  Fred Roozeboom,et al.  High‐Speed Spatial Atomic‐Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation , 2010, Advanced materials.

[37]  M. Unser,et al.  ow-bond axisymmetric drop shape analysis for surface tension and contact ngle measurements of sessile drops , 2010 .

[38]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[39]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[40]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[41]  Formulations and processing of nanocrystalline TiO2 films for the different requirements of plastic, metal and glass dye solar cell applications. , 2013, Nanotechnology.

[42]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[43]  M. Grätzel,et al.  Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. , 2014, ChemSusChem.

[44]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[45]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[46]  V. Zardetto,et al.  Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye‐Sensitized Solar Cells , 2014 .

[47]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.