Three-dimensional modelling of 300 mm Czochralski silicon crystal growth with a transverse magnetic field

A method including a polynomial fitting step was proposed for crystallization interface correction of Czochralski crystal growth simulation, which can obtain an axisymmetric interface under a non-axisymmetric flow when the crystal rotates.

[1]  Wenhui Ma,et al.  Thermodynamic Analysis of Dissolved Oxygen in a Silicon Melt and the Effect of Processing Parameters on the Oxygen Distribution in Single-crystal Silicon During Czochralski Growth , 2022, Silicon.

[2]  K. Sueoka,et al.  Numerical Analysis of Constitutional Supercooling in Heavily Doped Silicon Crystals Grown Using the Czochralski Method , 2022, SSRN Electronic Journal.

[3]  K. Dadzis,et al.  Development and validation of a thermal simulation for the Czochralski crystal growth process using model experiments , 2022, Journal of Crystal Growth.

[4]  Yuehui Yu,et al.  Melt convection and temperature distribution in 300 mm Czochralski crystal growth with transverse magnetic field , 2022, Journal of Crystal Growth.

[5]  C. Kirmse,et al.  Model experiments for melt flow in Czochralski growth of silicon , 2022, Journal of Crystal Growth.

[6]  Lijun Liu,et al.  Effect of cusp magnetic field on the turbulent melt flow and crystal/melt interface during large-size Czochralski silicon crystal growth , 2021 .

[7]  V. Kalaev,et al.  A modified hypothesis of Reynolds stress tensor modeling for mixed turbulent convection in crystal growth , 2021, Journal of Crystal Growth.

[8]  D. Borisov,et al.  ILES of melt turbulent convection with conjugated heat transfer in the crucible and gas flow for Czochralski silicon crystal growth system , 2021 .

[9]  J. Derby,et al.  Physically-based, lumped-parameter models for the prediction of oxygen concentration during Czochralski growth of silicon crystals , 2021, Journal of Crystal Growth.

[10]  K. Kakimoto,et al.  Analysis of the Effect of Cusp‐Shaped Magnetic Fields on Heat, Mass, and Oxygen Transfer Using a Coupled 2D/3D Global Model , 2021, Crystal Research and Technology.

[11]  K. Sueoka,et al.  Unsteady numerical simulations considering effects of thermal stress and heavy doping on the behavior of intrinsic point defects in large-diameter Si crystal growing by Czochralski method , 2020 .

[12]  V. Kalaev Computer modeling of HMCz Si growth , 2020 .

[13]  Lijun Liu,et al.  The influence mechanism of melt flow instability on the temperature fluctuation on the crystal/melt interface during Czochralski silicon crystal growth , 2019, International Journal of Heat and Mass Transfer.

[14]  K. Kakimoto,et al.  Time-dependent behavior of melt flow in the industrial scale silicon Czochralski growth with a transverse magnetic field , 2019, Journal of Crystal Growth.

[15]  T. Nakamura,et al.  Fully three dimensional numerical analysis of industrial scale silicon Czochralski growth with a transverse magnetic field , 2017 .

[16]  Ying Teng,et al.  Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field , 2014 .

[17]  Y. Li,et al.  Large eddy simulation of industrial Czochralski Si crystal growth under transverse magnetic field , 2014 .

[18]  Maksims Kirpo,et al.  Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT , 2013 .

[19]  J. Friedrich,et al.  Combined global 2D–local 3D modeling of the industrial Czochralski silicon crystal growth process , 2013 .

[20]  Lijun Liu,et al.  Effects of static magnetic fields on thermal fluctuations in the melt of industrial CZ-Si crystal growth , 2012 .

[21]  V. Regnier,et al.  Effective simulation of the effect of a transverse magnetic field (TMF) in Czochralski Silicon growth , 2012 .

[22]  Y. Wang,et al.  Large-eddy simulation of melt turbulence in a 300-mm Cz–Si crystal growth , 2012 .

[23]  J. Zhan,et al.  Numerical Simulation of Marangoni Flow in Czochralski Crystal Growth Under Magnetic Field , 2011 .

[24]  N. Jekabsons,et al.  Applicability of LES turbulence modeling for CZ silicon crystal growth systems with traveling magnetic field , 2010 .

[25]  V. Kalaev,et al.  Development of oxygen transport model in Czochralski growth of silicon crystals , 2008 .

[26]  K. Kakimoto,et al.  Partly three-dimensional calculation of silicon Czochralski growth with a transverse magnetic field , 2007 .

[27]  V. Kalaev Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth , 2007 .

[28]  K. Kakimoto,et al.  Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model , 2005 .

[29]  T. Wetzel,et al.  Numerical 3D modelling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements , 2004 .

[30]  T. Wetzel,et al.  Numerical 3D modelling of turbulent melt flow in large CZ system with horizontal DC magnetic field—I: flow structure analysis , 2004 .

[31]  W. E. Langlois,et al.  Effects of the finite electrical conductivity of the crystal on hydromagnetic Czochralski flow , 1987 .

[32]  K. Yi,et al.  Use of magnetic fields in crystal growth from semiconductor melts , 1996 .