Mechanical properties of connected carbon nanorings via molecular dynamics simulation

Stable, carbon nanotori can be constructed from nanotubes. In theory, such rings could be used to fabricate networks that are extremely flexible and offer a high strength-to-density ratio. As a first step towards realizing such nanochains and nanomaile, the mechanical properties of connected carbon nanorings were investigated via molecular dynamics simulation. The Young's modulus, extensibility and tensile stength of nanorings were estimated under conditions that idealize the constraints of nanochains and nanomaile. The results indicate nanorings are stable under large tensile deformation. The calculated Young's modulus of nanorings was found increase with deformation from 19.43 GPa to 121.94 GPa (without any side constraints) and from 124.98 GPa to 1.56 TPa (with side constraints). The tensile strength of unconstrained and constrained nanorings is estimated to be 5.72 and 8.522 GPa, respectively. The maximum strain is approximately 39% (nanochains) and 25.2% (nanomaile), and these deformations are completely reversible.

[1]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[2]  M. Lake,et al.  CNF Re‐Inforced Polymer Composites , 2004 .

[3]  Y. Gogotsi,et al.  Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers , 2004 .

[4]  K. M. Liew,et al.  On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation , 2004 .

[5]  K. Liao,et al.  Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy , 2004 .

[6]  David Tománek,et al.  Bonding and energy dissipation in a nanohook assembly. , 2003, Physical review letters.

[7]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[8]  R. Baer,et al.  Carbon nanotube closed-ring structures , 2003 .

[9]  N. Sasaki,et al.  C60 molecular bearings. , 2003, Physical review letters.

[10]  C. Shearwood,et al.  Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films , 2002 .

[11]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[12]  Fritz Vollrath,et al.  Materials: Surprising strength of silkworm silk , 2002, Nature.

[13]  S. Sinnott,et al.  Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulations. , 2002, Physical review letters.

[14]  G. Guo,et al.  Colossal paramagnetic moments in metallic carbon nanotori. , 2002, Physical review letters.

[15]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[16]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[17]  S. Shinkai,et al.  Ring Closure of Carbon Nanotubes , 2001, Science.

[18]  S. Sinnott,et al.  Separation of Organic Molecular Mixtures in Carbon Nanotubes and Bundles: Molecular Dynamics Simulations , 2001 .

[19]  J. Gilman,et al.  Nanotechnology , 2001 .

[20]  Lei Liu,et al.  Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations , 2000, cond-mat/0012219.

[21]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[22]  Susan B. Sinnott,et al.  Chemical functionalization of carbon nanotubes through energetic radical collisions , 2000 .

[23]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[24]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[25]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[26]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000, cond-mat/0001082.

[27]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[28]  W. Goddard,et al.  Studies of fullerenes and carbon nanotubes by an extended bond order potential , 1999 .

[29]  P. Avouris,et al.  Ring Formation in Single-Wall Carbon Nanotubes , 1999 .

[30]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[31]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .

[32]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[33]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[34]  Nan Yao,et al.  Young’s modulus of single-walled carbon nanotubes , 1998 .

[35]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[36]  P. Lambin,et al.  ATOMIC AND ELECTRONIC STRUCTURES OF LARGE AND SMALL CARBON TORI , 1998 .

[37]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998, cond-mat/9804226.

[38]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[39]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[40]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[41]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[42]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[43]  Ihara,et al.  Toroidal form of carbon C360. , 1993, Physical review. B, Condensed matter.

[44]  Dunlap,et al.  Connecting carbon tubules. , 1992, Physical review. B, Condensed matter.

[45]  Donald W. Brenner,et al.  Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene , 1991 .

[46]  J. Mintmire,et al.  Simulations of buckminsterfullerene (C60) collisions with a hydrogen-terminated diamond {111} surface , 1991 .

[47]  William A. Goddard,et al.  Prediction of fullerene packing in C60 and C70 crystals , 1991, Nature.

[48]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[49]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[50]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[51]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[52]  H. Dai,et al.  Fullerene 'crop circles' , 1997, Nature.

[53]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.