Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics

The paper is devoted to the problem of nonlinear robust control design for underwater vehicle/manipulator (UVM) systems composed of a freefloating platform equipped with a robot manipulator. The different bandwidth characteristics of the composite vehicle/arm dynamics are used as a basis for the control design via singular perturbation theory. The main contribution of this paper is that a robust nonlinear control is only required in the slow-subsystem (vehicle dynamics). Thus, this control is only used to compensate the coupling effects from the arm to the base. The paper also presents a comparative study between simple PD, a partial linearized control and the nonlinear robust feedback.