Zero-temperature scaling and simulated annealing

Simulated annealing with a more complicated set of moves than single-spin flips is applied to the one-dimensional Ising spin glass. The explicit connection between the residual entropy at T=0 in the simulated annealing and the number of metastable states, found previously for single-spin flips, is shown to be also true for these more complicated moves. This result together with a zero-temperature scaling argument is used to derive the degree of improvement that the inclusion of more complicated moves can produce. The results are in accord with the observations made for a number of problems in combinatorial optimization Application de la technique du recuit simule au verre de spin d'Ising 1D avec une dynamique plus compliquee que le renversement d'un seul spin, etudie precedemment, et mise en evidence de la conservation de la validite de la relation entre l'entropie residuelle a T=0 et le nombre d'etats metastables; utilisation de ce resultat en conjonction avec un argument de loi d'echelle a temperature nulle pour caracteriser l'amelioration produite par l'inclusion d'une dynamique plus compliquee

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[3]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[4]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[5]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[6]  Tiecheng Li,et al.  Structure of metastable states in a random Ising chain , 1981 .

[7]  J. Jäckle On the glass transition and the residual entropy of glasses , 1981 .

[8]  Marcel J. E. Golay,et al.  The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[11]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[12]  Rammile Ettelaie,et al.  Residual entropy and simulated annealing , 1985 .

[13]  Fisher,et al.  Residual energies after slow cooling of disordered systems. , 1986, Physical review letters.

[14]  Moore Ma Zero-temperature scaling and combinatorial optimization. , 1987 .

[15]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .