Vision-based 3-D trajectory tracking for unknown environments

This paper describes a vision-based system for 3-D localization of a mobile robot in a natural environment. The system includes a mountable head with three on-board charge-coupled device cameras that can be installed on the robot. The main emphasis of this paper is on the ability to estimate the motion of the robot independently from any prior scene knowledge, landmark, or extra sensory devices. Distinctive scene features are identified using a novel algorithm, and their 3-D locations are estimated with high accuracy by a stereo algorithm. Using new two-stage feature tracking and iterative motion estimation in a symbiotic manner, precise motion vectors are obtained. The 3-D positions of scene features and the robot are refined by a Kalman filtering approach with a complete error-propagation modeling scheme. Experimental results show that good tracking and localization can be achieved using the proposed vision system.

[1]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[2]  M. Buckingham Noise in electronic devices and systems , 1983 .

[3]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[4]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[5]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[7]  Ernst D. Dickmanns,et al.  An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles , 1990, IEEE Trans. Syst. Man Cybern..

[8]  Takeo Kanade,et al.  A multiple-baseline stereo , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[11]  Chris Harris,et al.  Geometry from visual motion , 1993 .

[12]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[13]  Anup Basu,et al.  Motion Tracking with an Active Camera , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Takeo Kanade,et al.  A multibaseline stereo system with active illumination and real-time image acquisition , 1995, Proceedings of IEEE International Conference on Computer Vision.

[15]  Ehud Rivlin,et al.  Localization and Homing Using Combinations of Model Views , 1995, Artif. Intell..

[16]  Seiji Inokuchi,et al.  Estimation of optical-flow in real time for navigation robots , 1995, 1995 Proceedings of the IEEE International Symposium on Industrial Electronics.

[17]  R. German Sintering theory and practice , 1996 .

[18]  Giovanni Attolico,et al.  Visual navigation of a mobile robot integrating an heading sensor , 1996, Proceedings of Conference on Intelligent Vehicles.

[19]  Larry S. Davis,et al.  Highway scene analysis in hard real-time , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[20]  Panos E. Trahanias,et al.  Visual landmark extraction and recognition for autonomous robot navigation , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[21]  Cordelia Schmid,et al.  Comparing and evaluating interest points , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[22]  Gregory Dudek,et al.  Mobile robot localization from learned landmarks , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[23]  Javier González,et al.  Two-dimensional landmark-based position estimation from a single image , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  Alexander Zelinsky,et al.  Development of a visually-guided autonomous underwater vehicle , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[25]  J. Clarke Modelling uncertainty: A primer , 1998 .

[26]  Ehud Rivlin,et al.  Image-based robot navigation under the perspective model , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[28]  Gregory D. Hager,et al.  Robust Vision for Vision-Based Control of Motion , 1999 .

[29]  Parvaneh Saeedi,et al.  3D motion tracking of a mobile robot in a natural environment , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[31]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[32]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[33]  Long Quan,et al.  Quasi-Dense Reconstruction from Image Sequence , 2002, ECCV.

[34]  Parvaneh Saeedi,et al.  An efficient binary corner detector , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[35]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[36]  P.D. Lawrence,et al.  3D localization and tracking in unknown environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[37]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[38]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[39]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[40]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[41]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[43]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[44]  R. C. Harrell,et al.  A fruit-tracking system for robotic harvesting , 2005, Machine Vision and Applications.

[45]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[46]  Andrew Zisserman,et al.  3D Motion recovery via affine Epipolar geometry , 1995, International Journal of Computer Vision.

[47]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.