Behavior of slab–column connections with partially debonded reinforcement under lateral loading

In a flat plate structure, slab–column connections must possess sufficient drift capacity to survive the lateral deformation resulting from wind or earthquake. Partial debonding of the flexural reinforcement may be a means of increasing drift capacity of a slab–column structure. This article summarizes cyclic loading tests conducted on two full-scale interior slab–column connections, one with and one without partially debonded reinforcement. Each test specimen consisted of a 4.2 m square slab with a 355 mm square column protruding 1.5 m above and below the slab. The slab thickness was 152 mm. The specimen with partially debonded reinforcement exhibited more lateral drift capacity (4.5%) than did the specimen with fully bonded reinforcement (3.5%). The lateral load capacity of the debonded specimen was approximately 20% greater than that of the bonded control specimen. With partial debonding of the flexural reinforcement, cyclic load appeared to produce less damage to the connection in the vicinity of the ...