Self-reinforced Y-α-sialon ceramics with barium.aluminosilicate as an additive

Y-α-sialons (Y_0.333Si_10Al_2ON_15) were prepared by hot pressing using 5 wt.% BaAl_2Si_2O_8 as an additive. The results showed that barium aluminosilicate not only.served as a liquid-phase sintering aid to promote densification, but also facilitated the.development of elongated α-sialon grains. The obtained self-toughened α-sialon was.both hard and tough. The Vickers hardness, flexural strength, and fracture toughness.are 18.9 GPa, 802 MPa, and 6.0 Mpam^1/2, respectively. Post heat treatment could.promote the growth of elongated α-sialon grains, hence further increasing its.toughness.

[1]  J. Ferreira,et al.  Low-temperature preparation of in situ toughened Yb α-SiAlON ceramics by spark plasma sintering (SPS) with addition of combustion synthesized seed crystals , 2005 .

[2]  Yi-bing Cheng,et al.  Microstructural Development of Calcium alpha‐SiAlON Ceramics with Elongated Grains , 2004 .

[3]  M. Nygren,et al.  Self-reinforced α-SiAlON ceramics with improved damage tolerance developed by a new processing strategy , 2004 .

[4]  I. Chen,et al.  Microstructure Control of In‐Situ‐Toughened α‐SiAlON Ceramics , 2004 .

[5]  M. Nygren,et al.  Formation of in situ reinforced microstructures in α-sialon ceramics: Part III. Static and dynamic ripening , 2004 .

[6]  C. Wöll,et al.  Organic molecular-beam deposition of perylene on Cu(110): Results from near-edge x-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy , 2004 .

[7]  I. Chen,et al.  Liquid-Phase Growth of Small Crystals for Seeding α-SiAlON Ceramics , 2004 .

[8]  K. Hirao,et al.  Processing and Properties of in Situ‐Reinforced α‐SiAlONs Stabilized with Y2O3 and Lu2O3 , 2004 .

[9]  M. Nygren,et al.  Reaction sequences occurring in dense Li-doped sialon ceramics: influence of temperature and holding time , 2003 .

[10]  Yi-bing Cheng,et al.  Microstructural design of Ca α-sialon ceramics: effects of starting compositions and processing conditions , 2003 .

[11]  P. Aswath,et al.  Role of mineralizers on the hexacelsian to celsian transformation in the barium aluminosilicate (BAS) system , 2003 .

[12]  M. Iwasa,et al.  Synthesis and properties of barium aluminosilicate glass–ceramic composites reinforced with in situ grown Si3N4 whiskers , 2003 .

[13]  Zhe Zhao,et al.  Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening , 2002, Nature.

[14]  M. Nygren,et al.  Formation of in situ Reinforced Microstructures in α-sialon Ceramics: Part II. In the Presence of a Liquid Phase , 2002 .

[15]  M. Nygren,et al.  Formation of in-situ reinforced microstructure in α–sialon ceramics I: Stoichiometric oxygen-rich compositions , 2002 .

[16]  D. Kim,et al.  Growth of elongated grains in α-SiAlON ceramics , 2001 .

[17]  Weiwu Chen,et al.  Effect of processing on the morphology of α-sialon grains , 2000 .

[18]  K. Komeya,et al.  Inhomogeneous grain growth and elongation of Dy-α sialon ceramics at temperatures above 1800°C , 2000 .

[19]  M. Hoffmann,et al.  Hard and Tough α-SiAION Ceramics , 2000 .

[20]  A. Hendry,et al.  Fabrication and microstructure of sialon-bonded silicon carbide , 1999 .

[21]  I. Chen,et al.  Kinetics of phase transformations in SiAlON Ceramics: II. Reaction Paths , 1999 .

[22]  H. Kleebe,et al.  Microstructure and Fracture Toughness of Si3N4 Ceramics: Combined Roles of Grain Morphology and Secondary Phase Chemistry , 1999 .

[23]  M. Mitomo In-situ Microstructural Control in Engineering Ceramics , 1998 .

[24]  I. Chen,et al.  A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure , 1997, Nature.

[25]  P. Aswath,et al.  Synthesis and properties of in situ Si3N4-reinforced BaO·Al2O3·2SiO2 ceramic matrix composites , 1997 .

[26]  M. Hoffmann,et al.  Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics , 1995 .

[27]  William E Lee,et al.  Crystallization of Celsian (BaAl2Si2O8) Glass , 1995 .

[28]  T. Ekström,et al.  Hot‐Pressed MoSi2‐Particulate‐Reinforced α‐SiAlON Composites , 1995 .

[29]  Y. Akimune,et al.  Effect of Grain Growth of β‐Silicon Nitride on Strength, Weibull Modulus, and Fracture Toughness , 1993 .

[30]  Narottam P. Bansal,et al.  Crystallization Behavior and Properties of BaO · Al2O3 · 2SiO2 Glass Matrices , 1990 .

[31]  N. Bansal,et al.  Crystallization of a barium-aluminosilicate glass , 1989 .

[32]  Narottam P. Bansal,et al.  Crystallization kinetics of BaO–Al_2O_3–SiO_2 glasses , 1989 .

[33]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[34]  R. H. Thomas Phase Equilibrium in a Portion of the Ternary System Ba OA-I2,O3,-SiO2, , 1950 .

[35]  M. Herrmann,et al.  The effect of processing conditions, amount of additives and composition on the microstructures and mechanical properties of α-SiAlON ceramics , 2002 .

[36]  F. Yu,et al.  Microstructural Control of a 70% Silicon Nitride– 30% Barium Aluminum Silicate Self‐Reinforced Composite , 2001 .

[37]  S. Kanzaki,et al.  Mechanical Properties of Silicon Nitrides with Tailored Microstructure by Seeding , 1996 .

[38]  T. Ekström,et al.  Reversible α⇌ sialon transformation in heat-treated sialon ceramics , 1993 .

[39]  Michael J. Hoffmann,et al.  The influence of microstructure on the mechanical behavior of silicon nitride ceramics , 1992 .