On error estimates for Galerkin finite element methods for the Camassa-Holm equation.

We consider the Camassa–Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order $$L^{2}$$L2-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, “classical” Runge–Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the ‘peakon’ type.

[1]  P. Olver,et al.  Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation , 2000 .

[2]  Hongjun Gao,et al.  An initial boundary value problem of Camassa–Holm equation , 2000 .

[3]  L. R. Scott,et al.  Numerical schemes for a model for nonlinear dispersive waves , 1985 .

[4]  Xavier Raynaud,et al.  A convergent numerical scheme for the Camassa--Holm equation based on multipeakons , 2005 .

[5]  A. Constantin,et al.  Orbital stability of solitary waves for a shallow water equation , 2001 .

[6]  B. Fuchssteiner Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation , 1996 .

[7]  Jian-Guo Liu,et al.  Convergence of a Particle Method and Global Weak Solutions of a Family of Evolutionary PDEs , 2012, SIAM J. Numer. Anal..

[8]  J. Douglas,et al.  Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .

[9]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[11]  Finite Element Methods of High-Order Accuracy for Singular Two-Point Boundary Value Problems with Nonsmooth Solutions , 1980 .

[12]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[13]  Pascal Redou,et al.  On the Inverse Scattering Approach to the Camassa-Holm Equation , 2003, math-ph/0403039.

[14]  Kenneth H. Karlsen,et al.  A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data , 2008, SIAM J. Numer. Anal..

[15]  A. Parker Wave dynamics for peaked solitons of the Camassa–Holm equation , 2008 .

[16]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  J. Escher,et al.  Global existence and blow-up for a shallow water equation , 1998 .

[18]  Allen Parker,et al.  On the Camassa-Holm equation and a direct method of solution I. Bilinear form and solitary waves , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Xavier Raynaud,et al.  Convergence of a Finite Difference Scheme for the Camassa-Holm Equation , 2006, SIAM J. Numer. Anal..

[20]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[21]  Xavier Raynaud,et al.  Convergence of a spectral projection of the Camassa‐Holm equation , 2006 .

[22]  A. Fokas On a class of physically important integrable equations , 1994 .

[23]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[24]  L. Molinet On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey , 2004 .

[25]  HAILIANG LIU,et al.  An Invariant Preserving Discontinuous Galerkin Method for the Camassa-Holm Equation , 2016, SIAM J. Sci. Comput..

[26]  J. Lenells Traveling wave solutions of the Camassa-Holm equation , 2005 .

[27]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[28]  Robert Artebrant,et al.  Numerical simulation of Camassa-Holm peakons by adaptive upwinding , 2006 .

[29]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[30]  W. Strauss,et al.  Stability of peakons , 2000 .

[31]  Allen Parker,et al.  On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  H. Kalisch,et al.  Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .

[33]  Alina Chertock,et al.  Elastic collisions among peakon solutions for the Camassa-Holm equation , 2015 .

[34]  Joachim Escher,et al.  Initial Boundary Value Problems of the Camassa–Holm Equation , 2008 .

[35]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .

[36]  D. C. Antonopoulos,et al.  Numerical solution of Boussinesq systems of the Bona--Smith family , 2010 .

[37]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[38]  A. Constantin On the Cauchy Problem for the Periodic Camassa–Holm Equation , 1997 .

[39]  Adrian Constantin,et al.  Stability of the Camassa-Holm solitons , 2002, J. Nonlinear Sci..

[40]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[41]  J. Douglas,et al.  Optimal Lœ Error Estimates for Galerkin Approximations to Solutions of Two-Point Boundary Value Problems , 2010 .

[42]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[43]  V. Thomée,et al.  Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable , 1983 .

[44]  Allen Parker,et al.  On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  Vidar Thomée,et al.  Convergence Estimates for Galerkin Methods for Variable Coefficient Initial Value Problems , 1974 .