Optimality conditions for multiple objective fractional subset programming with (ρ,σ,θ)-type-I and related non-convex functions

In this paper, we introduce a class of generalized invex n-set functions, called (ρ,σ,θ)-type-I and related non-convex functions, and then establish a number of parametric and semi-parametric sufficient optimality conditions for the primal problem under the aforesaid assumptions. This work partially extends an earlier work of Mishra et al. (Math. Methods Oper. Res. 67, 493–504, 2008) to a wider class of functions.

[1]  Vasile Preda,et al.  Optimality and Wolfe Duality for Multiobjective Programming Problems Involving n-set Functions , 2001 .

[2]  Y. Ye,et al.  D-Invexity and optimality conditions , 1991 .

[3]  C. R. Bector,et al.  Duality for Multiobjective Fractional Programming Involving n-Set Functions , 1994 .

[4]  Vasile Preda,et al.  On Duality of Multiobjective Fractional Measurable Subset Selection Problems , 1995 .

[5]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[6]  Gue Myung Lee,et al.  Duality for multiobjective programming involving n-set functions , 1994 .

[7]  Vaithilingam Jeyakumar,et al.  On generalised convex mathematical programming , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Wei-Shen Hsia,et al.  On multiple objective programming problems with set functions , 1985 .

[9]  Kin Keung Lai,et al.  Optimality conditions for multiple objective fractional subset programming with (Γ, ρ, σ, θ )-V-type-I and related non-convex functions , 2008, Math. Comput. Model..

[10]  G. J. Zalmai Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (ϝ, α, ϱ, θ)-V-convex functions , 2002 .

[11]  Lai-Jiu Lin,et al.  On the optimality conditions of vector-valued n-set functions☆ , 1991 .

[12]  G. J. Zalmai A transposition theorem with applications to constrained optimal control problems , 1989 .

[13]  V. Preda,et al.  Oil minmax programming problems containing n-set functions , 1991 .

[14]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[15]  Lai-Jiu Lin,et al.  On the optimality of differentiable nonconvex n-set functions☆ , 1992 .

[16]  J. Rosenmüller,et al.  Extreme convex set functions with finite carrier: General theory , 1974, Discret. Math..

[17]  Gue Myung Lee,et al.  Duality for multiobjective fractional programming involving n-set functions sup * , 1994 .

[18]  Rita Pini,et al.  A survey of recent[1985-1995]advances in generalized convexity with applications to duality theory and optimality conditions , 1997 .

[19]  Lai-Jiu Lin,et al.  Optimality for set functions with values in ordered vector spaces , 1989 .

[20]  Tan-Yu Lee,et al.  Lagrange multiplier theorem of multiobjective programming problems with set functions , 1991 .

[21]  H. W. Corley,et al.  Optimization Theory for n-Set Functions , 1987 .

[22]  Lai-Jiu Lin Duality theorems of vector-valued n-set functions , 1991 .

[23]  Gue Myung Lee,et al.  Optimality and Duality for Multiobjective Fractional Programming Involvingn-Set Functions , 1998 .

[24]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[25]  G. J. Zalmai,et al.  Sufficiency criteria and duality for nonlinear programs involving n-set functions , 1990 .

[26]  Wei-Shen Hsia,et al.  Lagrangian function and duality theory in multiobjective programming with set functions , 1988 .

[27]  M. A. Hanson,et al.  Multiobjective Programming under Generalized Type I Invexity , 2001 .

[28]  Wei-Shen Hsia,et al.  ProperD-solutions of multiobjective programming problems with set functions , 1987 .

[29]  M. A. Hanson,et al.  Further Generalizations of Convexity in Mathematical Programming , 1982 .

[30]  Hang-Chin Lai,et al.  Minimax Fractional Programming for n-Set Functions and Mixed-Type Duality under Generalized Invexity , 2008 .

[31]  M. A. Hanson,et al.  Necessary and sufficient conditions in constrained optimization , 1987, Math. Program..

[32]  Robert J. T. Morris,et al.  Optimal constrained selection of a measurable subset , 1979 .

[33]  Kin Keung Lai,et al.  Optimality and duality for a nonsmooth multiobjective optimization involving generalized type I functions , 2008, Math. Methods Oper. Res..

[34]  Lai-Jiu Lin,et al.  Optimality of differentiable, vector-valued n-set functions☆ , 1990 .

[35]  G. J. Zalmai Semiparametric Sufficient Efficiency Conditions and Duality Models for Multiobjective Fractional Subset Programming Problems with Generalized (Ф, ρ, θ)-Convex Functions , 2002 .

[36]  Shashi Kant Mishra On Multiple-Objective Optimization with Generalized Univexity , 1998 .

[37]  G. J. Zaimai Optimality conditions and duality for constrained measurable subset selection problems with minmax objective functions , 1989 .