Single-nucleus gene and gene set expression-based similarity network fusion identifies autism molecular subtypes

[1]  Kai Wang,et al.  Tissue-wide cell-specific proteogenomic modeling reveals novel candidate risk genes in autism spectrum disorders , 2022, npj Systems Biology and Applications.

[2]  Guoli Ji,et al.  Cell Type-Specific Predictive Models Perform Prioritization of Genes and Gene Sets Associated With Autism , 2021, Frontiers in Genetics.

[3]  B. Bardoni,et al.  Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders , 2021, Molecular Psychiatry.

[4]  Guoli Ji,et al.  An analytical method for the identification of cell type-specific disease gene modules , 2021, Journal of Translational Medicine.

[5]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[6]  M. Wong,et al.  A Robust and Generalizable Immune-Related Signature for Sepsis Diagnostics , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  Guoli Ji,et al.  Cell Type-Specific Gene Network-Based Analysis Depicts the Heterogeneity of Autism Spectrum Disorder , 2020, Frontiers in Cellular Neuroscience.

[8]  Lixin Cheng,et al.  Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis , 2020, Journal of Translational Medicine.

[9]  Kwong-Sak Leung,et al.  A network-based algorithm for the identification of moonlighting noncoding RNAs and its application in sepsis , 2020, Briefings Bioinform..

[10]  M. Vasu,et al.  MicroRNAs in Autism Spectrum Disorders. , 2020, Current pharmaceutical design.

[11]  Runan Yao,et al.  ShinyGO: a graphical gene-set enrichment tool for animals and plants , 2019, Bioinform..

[12]  D. Geschwind,et al.  Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism , 2019, Nature Communications.

[13]  Maximilian Haeussler,et al.  Single-cell genomics identifies cell type–specific molecular changes in autism , 2019, Science.

[14]  P. Uldall,et al.  A recurrent de novo CUX2 missense variant associated with intellectual disability, seizures, and autism spectrum disorder , 2018, European Journal of Human Genetics.

[15]  B. H. Lo,et al.  Autism Spectrum Disorder , 2018, Journal of paediatrics and child health.

[16]  T. Takumi,et al.  Skeletal Site-specific Changes in Bone Mass in a Genetic Mouse Model for Human 15q11-13 Duplication Seen in Autism , 2017, Scientific Reports.

[17]  P. Ratcliffe,et al.  A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism. , 2017, American journal of human genetics.

[18]  John C Marioni,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[19]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[20]  Evan E. Eichler,et al.  Molecular subtyping and improved treatment of neurodevelopmental disease , 2016, Genome Medicine.

[21]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[22]  Max Kuhn,et al.  caret: Classification and Regression Training , 2015 .

[23]  E. Kolker,et al.  The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. , 2015, Omics : a journal of integrative biology.

[24]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[25]  Shannon E. Ellis,et al.  Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism , 2014, Nature Communications.

[26]  Jay Shendure,et al.  Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development , 2014, Cell.

[27]  D. Geschwind,et al.  Disentangling the heterogeneity of autism spectrum disorder through genetic findings , 2014, Nature Reviews Neurology.

[28]  Z. Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[29]  Partha P. Mitra,et al.  Co-expression Profiling of Autism Genes in the Mouse Brain , 2013, PLoS Comput. Biol..

[30]  Catherine Lord,et al.  DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes , 2013, Molecular Autism.

[31]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[32]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[33]  Zachary Warren,et al.  A multisite study of the clinical diagnosis of different autism spectrum disorders. , 2012, Archives of general psychiatry.

[34]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[35]  A. Sajantila,et al.  Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated with ASDs in Finnish sample , 2010, Psychiatric genetics.

[36]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[37]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[38]  Kali T. Witherspoon,et al.  Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID , 2016, Molecular Psychiatry.

[39]  M. Kanehisa,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[40]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .