Functional Group Modification of Metal–Organic Frameworks for CO2 Capture

Reducing the anthropogenic emission of CO2is currently a top priority due to its global warming effect. Capturing CO2 by porous materials is a promising approach due to its energetic efficiency and technical feasibility. A promising adsorbent for capturing CO2 should possess not only large BET specific surface areas (SSAs) but also high heat of adsorption. Since the intrinsic quadrupole moment of the CO2 molecule exists, introduction of a polar functional group in the framework of porous materials could enhance CO2 uptake. In this work, we adopt the postsynthetic modification approach to synthesize UMCM-1-NH2-MA (MA = maleic anhydride) material on the basis of UMCM-1-NH2 with an extremely high BET SSA of 4064 m2 g–1 and further explore the effects of free acid functionalities and aromatic amino groups on CO2 capture. The experimental and theoretical results show that, besides amino groups, the polar acidic functionalities also exhibit excellent capability for CO2 capture. Moreover, our first-principles ca...

[1]  S. Ramaprabhu,et al.  Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption , 2011 .

[2]  G. Zhu,et al.  High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure , 2010 .

[3]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[4]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[5]  C. Pinel,et al.  Generic postfunctionalization route from amino-derived metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[6]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[7]  Seth M. Cohen,et al.  Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. , 2009, Inorganic chemistry.

[8]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[9]  Xiaohong Shao,et al.  Hydrogen Storage in Mesoporous Coordination Frameworks: Experiment and Molecular Simulation , 2009 .

[10]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[11]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[12]  C. Lastoskie Caging Carbon Dioxide , 2010, Science.

[13]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[15]  A. Torrisi,et al.  Functionalized MOFs for Enhanced CO2 Capture , 2010 .

[16]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[17]  L. Czepirski,et al.  Virial-type thermal equation of gas-solid adsorption , 1989 .

[18]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[19]  Wenchuan Wang,et al.  Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. , 2009, Angewandte Chemie.

[20]  Xuan Peng,et al.  CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture , 2011 .

[21]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[22]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[23]  Wenchuan Wang,et al.  Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation , 2010 .

[24]  O. Yaghi,et al.  Reticular Chemistry and Metal-Organic Frameworks for Clean Energy , 2009 .

[25]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[26]  Wantai Yang,et al.  Lithium doping on metal-organic frameworks for enhancing H2 Storage , 2012 .

[27]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[28]  B. Smit,et al.  Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. , 2010, ACS nano.

[29]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[30]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[31]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[32]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[33]  Dan Zhao,et al.  Highly Stable Porous Polymer Networks with Exceptionally High Gas‐Uptake Capacities , 2011, Advanced materials.

[34]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[35]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[36]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[37]  Alexander M. Spokoyny,et al.  Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer , 2009 .

[38]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[39]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[40]  Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model , 2009 .

[41]  Jianwen Jiang,et al.  Molecular screening of metal-organic frameworks for CO2 storage. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[42]  Ruisheng Xue,et al.  Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: Preparation, measurements and simulation , 2011 .

[43]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[44]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[45]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[46]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[47]  F. Dreisbach,et al.  High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon , 1999 .

[48]  Wenchuan Wang,et al.  Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks , 2010 .

[49]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[50]  D. Cao,et al.  Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules , 2011 .

[51]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[52]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[53]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[54]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[55]  R. Banerjee,et al.  Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. , 2011, Chemical communications.

[56]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[57]  Seth M. Cohen,et al.  Engineering a metal-organic framework catalyst by using postsynthetic modification. , 2009, Angewandte Chemie.

[58]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[59]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[60]  A. Cooper,et al.  Microporous organic polymers for carbon dioxide capture , 2011 .

[61]  Samuel J. Mugavero,et al.  Tailoring Microporosity in Covalent Organic Frameworks , 2008, Advanced materials.

[62]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[63]  A. Torrisi,et al.  Impact of ligands on CO(2) adsorption in metal-organic frameworks: First principles study of the interaction of CO(2) with functionalized benzenes. II. Effect of polar and acidic substituents. , 2010, The Journal of chemical physics.

[64]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[65]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[66]  Jian Zhang,et al.  High and selective CO2 uptake, H2storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1 , 2011 .