ASTROMETRIC MICROLENSING BY LOCAL DARK MATTER SUBHALOS

High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a small change in the star's apparent position. This astrometric microlensing signal depends on the inner density profile of the subhalo and can be greater than a few microarcseconds for an intermediate-mass subhalo (M vir 104 M ☉) passing within arcseconds of a star. Current and near-future instruments could detect this signal, and we evaluate the Space Interferometry Mission's (SIM's), Gaia's, and ground-based telescopes' potential as subhalo detectors. We develop a general formalism to calculate a subhalo's astrometric lensing cross section over a wide range of masses and density profiles, and we calculate the lensing event rate by extrapolating the subhalo mass function predicted by simulations down to the subhalo masses potentially detectable with this technique. We find that, although the detectable event rates are predicted to be low on the basis of current simulations, lensing events may be observed if the central regions of dark matter subhalos are more dense than current models predict (1 M ☉ within 0.1 pc of the subhalo center). Furthermore, targeted astrometric observations can be used to confirm the presence of a nearby subhalo detected by gamma-ray emission. We show that, for sufficiently steep density profiles, ground-based adaptive optics astrometric techniques could be capable of detecting intermediate-mass subhalos at distances of hundreds of parsecs, while SIM could detect smaller and more distant subhalos.

[1]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[2]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[3]  Probing Dark Matter Substructure in Lens Galaxies , 2001, astro-ph/0109499.

[4]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[5]  M. Buckley,et al.  Dark matter subhalos in the Fermi first source catalog , 2010, 1004.1644.

[6]  O. University,et al.  The survival and disruption of cold dark matter microhaloes: implications for direct and indirect detection experiments , 2006, astro-ph/0608495.

[7]  Toshikazu Ebisuzaki,et al.  GAMMA-RAY SIGNAL FROM EARTH-MASS DARK MATTER MICROHALOS , 2010, 1006.3392.

[8]  M. Chiba,et al.  THREE-DIMENSIONAL MAPPING OF CDM SUBSTRUCTURE AT SUBMILLIMETER WAVELENGTHS , 2005, astro-ph/0503212.

[9]  Ucsd,et al.  Direct Detection of Cold Dark Matter Substructure , 2001, astro-ph/0111456.

[10]  Kinetic decoupling of neutralino dark matter , 2001, astro-ph/0103452.

[11]  Arizona State University,et al.  Impact of dark matter microhalos on signatures for direct and indirect detection , 2010, 1004.5432.

[12]  Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo , 2000, astro-ph/0010056.

[13]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[14]  J. Stadel,et al.  Radial distribution and strong lensing statistics of satellite galaxies and substructure using high‐resolution ΛCDM hydrodynamical simulations , 2005, astro-ph/0506125.

[15]  On mini-halo encounters with stars , 2006, astro-ph/0604142.

[16]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[17]  Frantz Martinache,et al.  Masses of Astrometrically Discovered and Imaged Binaries: G78-28AB and GJ 231.1BC , 2006 .

[18]  E. Rozo,et al.  Astrometric Perturbations in Substructure Lensing , 2006, astro-ph/0606359.

[19]  S. R. Kulkarni,et al.  Precision Astrometry With Adaptive Optics , 2009 .

[20]  New signature of dark matter annihilations : Gamma rays from intermediate-mass black holes , 2005, astro-ph/0509565.

[21]  Destruction of small-scale dark matter clumps in the hierarchical structures and galaxies , 2005, astro-ph/0511494.

[22]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[23]  Earth-mass dark-matter haloes as the first structures in the early Universe , 2005, Nature.

[24]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[25]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[26]  Brendan P. Bowler,et al.  DYNAMICAL MASS OF THE M8+M8 BINARY 2MASS J22062280 − 2047058AB,,, , 2009, 0909.4784.

[27]  P. Madau,et al.  Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos , 2001, astro-ph/0108224.

[28]  Simulations of strong gravitational lensing with substructure , 2004, astro-ph/0411587.

[29]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[30]  R. Bender,et al.  Finite-source and finite-lens effects in astrometric microlensing , 2010, 1005.3021.

[31]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[32]  V. Berezinsky,et al.  Superdense cosmological dark matter clumps , 2010 .

[33]  F. Martinache,et al.  Dynamical Mass of GJ 802B: A Brown Dwarf in a Triple System , 2008, 0801.1525.

[34]  Christophe Dupuy,et al.  The VLTI PRIMA Facility , 2008 .

[35]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[36]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[37]  Extended Source Effects in Substructure Lensing , 2004, astro-ph/0411168.

[38]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[39]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[40]  Jessica R. Lu,et al.  A DISK OF YOUNG STARS AT THE GALACTIC CENTER AS DETERMINED BY INDIVIDUAL STELLAR ORBITS , 2008, 0808.3818.

[41]  E. Mörtsell,et al.  STRONG LENSING BY SUBHALOS IN THE DWARF-GALAXY-MASS RANGE. II. DETECTION PROBABILITIES , 2009, 0905.4738.

[42]  J. Siegal-Gaskins Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background , 2008, 0807.1328.

[43]  The mass function and average mass-loss rate of dark matter subhaloes , 2005 .

[44]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[45]  P. Madau,et al.  Dark Matter Subhalos and the Dwarf Satellites of the Milky Way , 2008, 0802.2265.

[46]  S. Ando Gamma-ray background anisotropy from Galactic dark matter substructure , 2009, 0903.4685.

[47]  Benjamin F. Lane,et al.  Scientific results from high-precision astrometry at the Palomar Testbed Interferometer , 2006, SPIE Astronomical Telescopes + Instrumentation.

[48]  M. Kamionkowski,et al.  Galactic substructure and dark-matter annihilation in the Milky Way halo , 2010, 1001.3144.

[49]  What mass are the smallest protohalos? , 2006, Physical review letters.

[50]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[51]  Gravitational Imaging of CDM Substructure , 2005, astro-ph/0501324.

[52]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[53]  R. Metcalf The Detection of Pure Dark Matter Objects with Bent Multiply Imaged Radio Jets , 2002, astro-ph/0203012.

[54]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[55]  J. Miralda-Escudé Microlensing Events from Measurements of the Deflection , 1996, astro-ph/9605138.

[56]  M. Walker Microlensed Image Motions , 1995 .

[57]  P. Schneider,et al.  Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.

[58]  E. Zackrisson,et al.  Strong Lensing by Subhalos in the Dwarf Galaxy Mass Range. I. Image Separations , 2008, 0806.2149.

[59]  L. Moustakas,et al.  A NEW CHANNEL FOR DETECTING DARK MATTER SUBSTRUCTURE IN GALAXIES: GRAVITATIONAL LENS TIME DELAYS , 2008, 0805.0309.

[60]  Institute for Advanced Study,et al.  Tests for Substructure in Gravitational Lenses , 2003, astro-ph/0302036.

[61]  R. Takahashi Astrometric Microlensing by Finite-Size Lenses , 2003 .

[62]  J. Kneib,et al.  Pseudo elliptical lensing mass model: Application to the NFW mass distribution , 2001, astro-ph/0112138.

[63]  Detecting cold dark-matter candidates. , 1986 .

[64]  U. Tsukuba,et al.  Quasar Mesolensing : Direct Probe to Substructures around Galaxies , 2003, astro-ph/0310296.

[65]  LENSED IMAGE ANGLES : NEW STATISTICAL EVIDENCE FOR SUBSTRUCTURE , 2008, 0806.2823.

[66]  M. Kamionkowski,et al.  Galactic substructure and direct detection of dark matter , 2008, 0801.3269.

[67]  Y. Hoffman,et al.  DISSECTING GALAXY FORMATION. II. COMPARING SUBSTRUCTURE IN PURE DARK MATTER AND BARYONIC MODELS , 2010, 1002.4200.

[68]  C. Keeton,et al.  IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS , 2009, 0911.2456.

[69]  V. Springel,et al.  Substructure lensing: effects of galaxies, globular clusters and satellite streams , 2010, 1004.3094.

[70]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[71]  L. Koopmans,et al.  Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function , 2009, 0903.4752.

[72]  A. Gould,et al.  A NEW PROBE OF DARK MATTER AND HIGH-ENERGY UNIVERSE USING MICROLENSING , 2009, 0908.0735.

[73]  A. Gould Selection of Nearby Microlensing Candidates for Observation by the Space Interferometry Mission , 2000 .

[74]  Roeland P. van der Marel,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. I. HUBBLE SPACE TELESCOPE PHOTOMETRY AND PROPER MOTIONS , 2009, 0905.0627.

[75]  R. Blandford,et al.  2016+112: a gravitationally lensed type II quasar , 2001, astro-ph/0106575.

[76]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[77]  V. Springel,et al.  SUBSTRUCTURE DEPLETION IN THE MILKY WAY HALO BY THE DISK , 2009, 0907.3482.

[78]  Dark matter subhaloes in numerical simulations , 2004, astro-ph/0406034.

[79]  L. Koopmans,et al.  Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies , 2008, 0805.0201.

[80]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[81]  Viswa Velur,et al.  CAMERA: a compact, automated, laser adaptive optics system for small aperture telescopes , 2008, Astronomical Telescopes + Instrumentation.

[82]  Probing dark matter substructure with pulsar timing , 2007, astro-ph/0702546.

[83]  A. M. Ghez,et al.  HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES , 2010, 1001.4800.

[84]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[85]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[86]  Philip A. Ianna,et al.  THE SOLAR NEIGHBORHOOD. XXI. PARALLAX RESULTS FROM THE CTIOPI 0.9 m PROGRAM: 20 NEW MEMBERS OF THE 25 PARSEC WHITE DWARF SAMPLE , 2009, 0902.0627.

[87]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[88]  K. Hełminiak,et al.  Precision astrometry of a sample of speckle binaries and multiples with the adaptive optics facilities at the Hale and Keck II telescopes , 2009, 0908.3468.

[89]  S. More,et al.  The role of luminous substructure in the gravitational lens system MG 2016+112 , 2008, 0810.5341.

[90]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[91]  Anomalous Flux Ratios in Gravitational Lenses: For or against Cold Dark Matter? , 2004, astro-ph/0402149.

[92]  E. Striani,et al.  FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010 .

[93]  Garching,et al.  Satellites in the field and lens galaxies: SDSS/COSMOS versus SLACS/CLASS , 2009, 0912.0614.

[94]  Michael Shao,et al.  Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest , 2006, 0708.3953.

[95]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[96]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[97]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[98]  P. Madau,et al.  The Shapes, Orientation, and Alignment of Galactic Dark Matter Subhalos , 2007, 0705.2037.

[99]  V. Springel,et al.  Effects of dark matter substructures on gravitational lensing: results from the Aquarius simulations , 2009, 0903.4559.

[100]  Y. Hoffman,et al.  The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes , 2010, 1002.2853.

[101]  S. Kay,et al.  Luminous satellite galaxies in gravitational lenses , 2008, 0809.3134.