Complexity analysis of the marginalized particle filter

In this paper, the computational complexity of the marginalized particle filter is analyzed and a general method to perform this analysis is given. The key is the introduction of the equivalent flop measure. In an extensive Monte Carlo simulation, different computational aspects are studied and compared with the derived theoretical results.

[1]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[2]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[3]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[4]  Jeroen D. Hol,et al.  Resampling in particle filters , 2004 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[7]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[8]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[9]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[10]  Fredrik Gustafsson,et al.  Linköping University Postprint Complexity Analysis of the Marginalized Particle Filter , 2005 .

[11]  C. Andrieu,et al.  A Particle Filter for Model Based Audio Source Separation , 2000 .

[12]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[13]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[14]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[15]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[16]  P. Nordlund Sequential Monte Carlo Filters and Integrated Navigation , 2002 .

[17]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[18]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[19]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[20]  Thomas B. Schön,et al.  On computational methods for nonlinear estimation , 2003 .

[21]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[22]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[23]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[24]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[25]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .