Matrix Krylov subspace methods for linear systems with multiple right-hand sides

Abstract In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) – which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace – and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods.

[1]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[4]  B. Vital Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .

[5]  Andy A. Nikishin,et al.  Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..

[6]  Hassane Sadok,et al.  CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm , 1999, Numerical Algorithms.

[7]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[8]  B. I. Schneider,et al.  The linear algebraic method for the scattering of electrons from atoms and molecules: Computational techniques , 1989 .

[9]  Hassane Sadok,et al.  On a variable smoothing procedure for Krylov subspace methods , 1998 .

[10]  Gareth Hargreaves Topics in Matrix Computations: Stability and Efficiency of Algorithms , 2005 .

[11]  M. Heyouni,et al.  The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides , 2001, Numerical Algorithms.

[12]  Daniel Boley Krylov space methods on state-space control models , 1994 .

[13]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[14]  V. Simoncini,et al.  Convergence properties of block GMRES and matrix polynomials , 1996 .

[15]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[16]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[17]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[18]  Mohammed Heyouni Méthode de Hessenberg généralisée et applications , 1996 .

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[21]  R. Mittra,et al.  A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .

[22]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  F. Chatelin Valeurs propres de matrices , 1988 .

[25]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[26]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[27]  Efstratios Gallopoulos,et al.  An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..