Matrix Krylov subspace methods for linear systems with multiple right-hand sides
暂无分享,去创建一个
M. Heyouni | A. Essai | M. Heyouni | A. Essai
[1] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[2] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[3] Azeddine Essai. Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.
[4] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[5] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[6] Hassane Sadok,et al. CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm , 1999, Numerical Algorithms.
[7] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[8] B. I. Schneider,et al. The linear algebraic method for the scattering of electrons from atoms and molecules: Computational techniques , 1989 .
[9] Hassane Sadok,et al. On a variable smoothing procedure for Krylov subspace methods , 1998 .
[10] Gareth Hargreaves. Topics in Matrix Computations: Stability and Efficiency of Algorithms , 2005 .
[11] M. Heyouni,et al. The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides , 2001, Numerical Algorithms.
[12] Daniel Boley. Krylov space methods on state-space control models , 1994 .
[13] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[14] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[15] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[16] H. Sadok,et al. Global FOM and GMRES algorithms for matrix equations , 1999 .
[17] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[18] Mohammed Heyouni. Méthode de Hessenberg généralisée et applications , 1996 .
[19] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[20] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[21] R. Mittra,et al. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .
[22] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[23] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[24] F. Chatelin. Valeurs propres de matrices , 1988 .
[25] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[26] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[27] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..