yaaJ, the tRNA-Specific Adenosine Deaminase, Is Dispensable in Bacillus subtilis.

Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β−galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.

[1]  B. Zhu,et al.  The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review , 2023, Frontiers in Microbiology.

[2]  M. Cocaign-Bousquet,et al.  When translation elongation is impaired, the mRNA is uniformly destabilized by the RNA degradosome, while the concentration of mRNA is altered along the molecule , 2023, Nucleic acids research.

[3]  Felix Feyertag,et al.  The Codon Statistics Database: A Database of Codon Usage Bias , 2022, bioRxiv.

[4]  Tsutomu Suzuki The expanding world of tRNA modifications and their disease relevance , 2021, Nature Reviews Molecular Cell Biology.

[5]  M. Yarus Crick Wobble and Superwobble in Standard Genetic Code Evolution , 2021, Journal of Molecular Evolution.

[6]  R. Alexander,et al.  Bacterial wobble modifications of NNA‐decoding tRNAs , 2019, IUBMB life.

[7]  M. Peppelenbosch,et al.  Errors in translational decoding: tRNA wobbling or misincorporation? , 2019, PLoS genetics.

[8]  S. Joseph,et al.  Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions , 2018, Nature Communications.

[9]  R. Giegé,et al.  Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop. , 2018, Journal of molecular biology.

[10]  S. Ranganathan,et al.  Celebrating wobble decoding: Half a century and still much is new , 2017, RNA biology.

[11]  Marco Galardini,et al.  Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. , 2017, Cell systems.

[12]  E. Westhof,et al.  New Structural Insights into Translational Miscoding. , 2016, Trends in biochemical sciences.

[13]  E. Westhof,et al.  An integrated, structure- and energy-based view of the genetic code , 2016, Nucleic acids research.

[14]  G. Igloi,et al.  Where have all the inosines gone? Conflicting evidence for A‐to‐I editing of the anticodon of higher eukaryotic tRNAACGArg questions the dogma of a universal wobble‐mediated decoding of CGN codons , 2016, IUBMB life.

[15]  E. Westhof,et al.  Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code , 2016, Nature Communications.

[16]  T. Stracker,et al.  A‐to‐I editing on tRNAs: Biochemical, biological and evolutionary implications , 2014, FEBS letters.

[17]  E. Westhof Isostericity and tautomerism of base pairs in nucleic acids , 2014, FEBS letters.

[18]  H. Inokuchi,et al.  tRNADB-CE: tRNA gene database well-timed in the era of big sequence data , 2014, Front. Genet..

[19]  E. Westhof,et al.  Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism , 2014, F1000prime reports.

[20]  P. Limbach,et al.  Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile , 2013, Nucleic acids research.

[21]  Y. Bessho,et al.  Life without tRNAArg–adenosine deaminase TadA: evolutionary consequences of decoding the four CGN codons as arginine in Mycoplasmas and other Mollicutes , 2013, Nucleic acids research.

[22]  Tsutomu Suzuki,et al.  Decoding system for the AUA codon by tRNAIle with the UAU anticodon in Mycoplasma mobile , 2013, Nucleic acids research.

[23]  Michael Y. Galperin,et al.  Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes , 2012, Environmental microbiology.

[24]  R. Bock,et al.  The Contributions of Wobbling and Superwobbling to the Reading of the Genetic Code , 2012, PLoS genetics.

[25]  P. Limbach,et al.  The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNAArgACG demands a relaxation of the wobble decoding rules , 2012, RNA biology.

[26]  E. Westhof,et al.  A new understanding of the decoding principle on the ribosome , 2012, Nature.

[27]  R. Lyngdoh,et al.  Role of wobble base pair geometry for codon degeneracy: purine-type bases at the anticodon wobble position , 2012, Journal of Molecular Modeling.

[28]  F. Murphy,et al.  Modifications Modulate Anticodon Loop Dynamics and Codon Recognition in E. coli tRNAArg1,2 , 2012, Journal of molecular biology.

[29]  M. Rodnina,et al.  Evolutionary optimization of speed and accuracy of decoding on the ribosome , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  L. Randau,et al.  A-to-I and C-to-U editing within transfer RNAs , 2011, Biochemistry (Moscow).

[31]  John Karijolich,et al.  Modifying the genetic code: Converting nonsense codons into sense codons by targeted pseudouridylation , 2011, Nature.

[32]  E. Dervyn,et al.  Life without the essential bacterial tRNAIle2–lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis , 2011, Molecular microbiology.

[33]  V. Ramakrishnan,et al.  How mutations in tRNA distant from the anticodon affect the fidelity of decoding , 2010, Nature Structural &Molecular Biology.

[34]  Peter G. Wolynes,et al.  Deciding fate in adverse times: Sporulation and competence in Bacillus subtilis , 2009, Proceedings of the National Academy of Sciences.

[35]  M. Bergdoll,et al.  Arabidopsis tRNA Adenosine Deaminase Arginine Edits the Wobble Nucleotide of Chloroplast tRNAArg(ACG) and Is Essential for Efficient Chloroplast Translation[W] , 2009, The Plant Cell Online.

[36]  Peter F. Stadler,et al.  tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..

[37]  D. Karcher,et al.  Superwobbling facilitates translation with reduced tRNA sets , 2008, Nature Structural &Molecular Biology.

[38]  M. Tomita,et al.  Permuted tRNA Genes Expressed via a Circular RNA Intermediate in Cyanidioschyzon merolae , 2007, Science.

[39]  K. Takai Classification of the possible pairs between the first anticodon and the third codon positions based on a simple model assuming two geometries with which the pairing effectively potentiates the decoding complex. , 2006, Journal of theoretical biology.

[40]  O. Uhlenbeck,et al.  tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. , 2006, Biochimie.

[41]  Tsutomu Suzuki,et al.  Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. , 2006, Molecular cell.

[42]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[43]  R. Green,et al.  An Active Role for tRNA in Decoding Beyond Codon:Anticodon Pairing , 2005, Science.

[44]  Yuko Yamada,et al.  Bacillus subtilis tRNA(Pro) with the anticodon mo5UGG can recognize the codon CCC. , 2005, Biochimica et biophysica acta.

[45]  Tsutomu Suzuki Biosynthesis and function of tRNA wobble modifications , 2005 .

[46]  F. Murphy,et al.  Structure of a purine-purine wobble base pair in the decoding center of the ribosome , 2004, Nature Structural &Molecular Biology.

[47]  F. Kawamura,et al.  Spontaneous Transformation and Its Use for Genetic Mapping in Bacillus subtilis , 2004, Bioscience, biotechnology, and biochemistry.

[48]  D. Bechhofer,et al.  Effect of Translational Signals on mRNA Decay in Bacillus subtilis , 2003, Journal of bacteriology.

[49]  Naotake Ogasawara,et al.  An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. , 2003, Molecular cell.

[50]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Kaneko,et al.  Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism , 2003, The EMBO journal.

[52]  K. Asai,et al.  Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. , 2002, Microbiology.

[53]  W. Keller,et al.  tadA, an essential tRNA‐specific adenosine deaminase from Escherichia coli , 2002, The EMBO journal.

[54]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[55]  N. Ogasawara,et al.  Systematic function analysis of Bacillus subtilis genes. , 2000, Research in microbiology.

[56]  W. Keller,et al.  An adenosine deaminase that generates inosine at the wobble position of tRNAs. , 1999, Science.

[57]  S. Kanaya,et al.  Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. , 1999, Gene.

[58]  S. Yokoyama,et al.  In VitroCodon-Reading Specificities of Unmodified tRNA Molecules with Different Anticodons on the Sequence Background ofEscherichia colitRNASer1☆ , 1999 .

[59]  G. Björk,et al.  Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. , 1997, Journal of molecular biology.

[60]  V. Lim Analysis of action of the wobble adenine on codon reading within the ribosome. , 1995, Journal of molecular biology.

[61]  T. Ohama,et al.  Translation of synonymous codons in family boxes by Mycoplasma capricolum tRNAs with unmodified uridine or adenosine at the first anticodon position. , 1995, Journal of molecular biology.

[62]  M. Dreyfus,et al.  The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. , 1995, The EMBO journal.

[63]  M. Barciszewska,et al.  Glycine codon discrimination and the nucleotide in position 32 of the anticodon loop. , 1995, Journal of molecular biology.

[64]  J. F. Curran,et al.  Decoding with the A:I wobble pair is inefficient. , 1995, Nucleic acids research.

[65]  D. Dubnau,et al.  The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis , 1994, Journal of bacteriology.

[66]  J. F. Curran,et al.  Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. , 1993, Nucleic acids research.

[67]  M. Barciszewska,et al.  Undiscriminating codon reading with adenosine in the wobble position. , 1993, Journal of molecular biology.

[68]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis , 1993 .

[69]  S. Osawa,et al.  CGG: an unassigned or nonsense codon in Mycoplasma capricolum. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Yarus,et al.  Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[71]  W. Hunter,et al.  Structure of an adenine˙cytosine base pair in DNA and its implications for mismatch repair , 1986, Nature.

[72]  D. Hirsh Tryptophan transfer RNA as the UGA suppressor. , 1971, Journal of molecular biology.

[73]  R. Doi,et al.  The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. , 1971, The Journal of biological chemistry.

[74]  F. Crick Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of molecular biology.

[75]  C. Anagnostopoulos,et al.  REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS , 1961, Journal of bacteriology.

[76]  N. Gupta,et al.  Fundamentals of Bacterial Physiology and Metabolism , 2021, Fundamentals of Bacterial Physiology and Metabolism.

[77]  Yukiko Yamazaki,et al.  Profiling of Escherichia coli Chromosome database. , 2008, Methods in molecular biology.

[78]  R. Losick,et al.  Molecular genetics of sporulation in Bacillus subtilis. , 1996, Annual review of genetics.

[79]  N. Ogasawara,et al.  Markedly unbiased codon usage in Bacillus subtilis. , 1985, Gene.

[80]  A. Martinez-Arias,et al.  Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. , 1983, Methods in enzymology.