Volcanism in the Solar System

[1]  J. Head,et al.  Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane , 2023, Nature Astronomy.

[2]  T. Lauer,et al.  Large-scale cryovolcanic resurfacing on Pluto , 2022, Nature Communications.

[3]  Bo Wu,et al.  Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars , 2021, Earth and Planetary Science Letters.

[4]  Wei Yang,et al.  Chang’e-5 samples reveal two-billion-year-old volcanic activity on the Moon and its source characteristics , 2021, Science China Earth Sciences.

[5]  Yue-heng Yang,et al.  Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane , 2021, Nature.

[6]  Chunlai Li,et al.  Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts , 2021, Nature.

[7]  M. Norman,et al.  Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5 , 2021, Science.

[8]  Bin Zhou,et al.  Scientific objectives and payloads of the lunar sample return mission—Chang’E-5 , 2021, Advances in Space Research.

[9]  Z. Ouyang,et al.  A dry lunar mantle reservoir for young mare basalts of Chang’e-5 , 2021, Nature.

[10]  Jian Zhang,et al.  New Discovery of ∼1866 Ma High‐temperature Mylonite in the Helanshan Complex: Marking a Late‐stage Ductile Shearing in the Khondalite Belt, North China Craton , 2021, Acta Geologica Sinica - English Edition.

[11]  A. Davies,et al.  A 2020 Observational Perspective of Io , 2021 .

[12]  J. Head,et al.  China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials , 2021 .

[13]  S. Conway,et al.  An overview of explosive volcanism on Mars , 2020 .

[14]  P. Moitra,et al.  Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. , 2020, 2011.05956.

[15]  L. Montési,et al.  Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus , 2020, Nature Geoscience.

[16]  P. Byrne A comparison of inner Solar System volcanism , 2020 .

[17]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[18]  C. Russell,et al.  Ceres: Astrobiological Target and Possible Ocean World. , 2020, Astrobiology.

[19]  A. Treiman,et al.  Present-day volcanism on Venus as evidenced from weathering rates of olivine , 2020, Science Advances.

[20]  M. Hesse,et al.  Impact-driven mobilization of deep crustal brines on dwarf planet Ceres , 2019, Nature Astronomy.

[21]  J. Snape,et al.  Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples , 2019, Space Science Reviews.

[22]  S. Sandford,et al.  Recent cryovolcanism in Virgil Fossae on Pluto , 2019, Icarus.

[23]  C. Russell,et al.  Slurry extrusion on Ceres from a convective mud-bearing mantle , 2019, Nature Geoscience.

[24]  F. Nimmo,et al.  Pluto’s ocean is capped and insulated by gas hydrates , 2019, Nature Geoscience.

[25]  J. Head,et al.  A theoretical model for the formation of Ring Moat Dome Structures: Products of second boiling in lunar basaltic lava flows , 2019, Journal of Volcanology and Geothermal Research.

[26]  D. Buczkowski,et al.  A Possible Brine Reservoir Beneath Occator Crater: Thermal and Compositional Evolution and Formation of the Cerealia Dome and Vinalia Faculae , 2019, Icarus.

[27]  C. Russell,et al.  Cryovolcanic rates on Ceres revealed by topography , 2018, Nature Astronomy.

[28]  H. McSween,et al.  Insights into Ceres's evolution from surface composition , 2018, Meteoritics & Planetary Science.

[29]  W. Feldman,et al.  Hydrothermal dynamics in a CM‐based model of Ceres , 2018, Meteoritics & Planetary Science.

[30]  J. Head,et al.  Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption , 2018 .

[31]  A. Plesa,et al.  Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures , 2017, Nature Communications.

[32]  C. Russell,et al.  The interior structure of Ceres as revealed by surface topography , 2017 .

[33]  J. Moore,et al.  Origin of the Pluto–Charon system: Constraints from the New Horizons flyby , 2017 .

[34]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[35]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[36]  L. Nittler,et al.  Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle , 2017 .

[37]  S. Baloga,et al.  Cryovolcanic emplacement of domes on Europa , 2017 .

[38]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations) , 2017 .

[39]  P. Boehnke,et al.  Early formation of the Moon 4.51 billion years ago , 2017, Science Advances.

[40]  David A. Williams,et al.  Cryovolcanism on Ceres , 2016, Science.

[41]  A. Davies,et al.  Keck observations of eruptions on Io in 2003–2005 , 2016 .

[42]  C. Russell,et al.  Composition and structure of the shallow subsurface of Ceres revealed by crater morphology , 2016 .

[43]  Paolo Mancinelli,et al.  Geology of the Raditladi quadrangle, Mercury (H04) , 2016 .

[44]  Carolyn M. Ernst,et al.  Remote sensing evidence for an ancient carbon-bearing crust on Mercury , 2016 .

[45]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[46]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[47]  D. Rothery,et al.  Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion , 2015 .

[48]  J. Head,et al.  Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury , 2015 .

[49]  W. Henning,et al.  TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io , 2015 .

[50]  J. Head,et al.  Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism , 2015 .

[51]  Imke de Pater,et al.  Near-infrared monitoring of Io and detection of a violent outburst on 29 August 2013 , 2014 .

[52]  Mark S. Robinson,et al.  Evidence for basaltic volcanism on the Moon within the past 100 million years , 2014 .

[53]  J. Head,et al.  Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets , 2014 .

[54]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[55]  H. Hiesinger,et al.  Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean , 2014 .

[56]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[57]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[58]  F. Poulet,et al.  Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains , 2013 .

[59]  J. Michalski,et al.  Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars , 2013, Nature.

[60]  E. Hauber,et al.  Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars , 2013 .

[61]  J. Head,et al.  Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism , 2013, Nature.

[62]  S. Murchie,et al.  The distribution and origin of smooth plains on Mercury , 2013 .

[63]  A. D. Rogers,et al.  Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics , 2013 .

[64]  M. Zuber,et al.  Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy , 2013 .

[65]  Franck Montmessin,et al.  Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere , 2012, Nature Geoscience.

[66]  M. Grott,et al.  Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data , 2012 .

[67]  T. Johnson,et al.  Io: Volcanic thermal sources and global heat flow , 2012 .

[68]  R. Greeley,et al.  Ancient volcanism and its implication for thermal evolution of Mars , 2012 .

[69]  Doris Breuer,et al.  Asymmetric thermal evolution of the Moon , 2012 .

[70]  Clark R. Chapman,et al.  Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history , 2011 .

[71]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[72]  B. Hynek,et al.  The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes , 2011 .

[73]  William V. Boynton,et al.  Quantitative geochemical mapping of martian elemental provinces , 2010 .

[74]  P. Drossart,et al.  Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data , 2010, Science.

[75]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[76]  O. Gasnault,et al.  Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? , 2009 .

[77]  L. Wilson Volcanism in the Solar System , 2009 .

[78]  Stephanie C. Werner,et al.  The global martian volcanic evolutionary history , 2009 .

[79]  I. Pater,et al.  The global distribution of sulfur dioxide ice on Io, observed with OSIRIS on the W.M. Keck telescope , 2009 .

[80]  S. Murchie,et al.  Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances , 2008 .

[81]  M. Anand,et al.  Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009 , 2007, Nature.

[82]  A. McEwen,et al.  Layering stratigraphy of eastern Coprates and northern Capri Chasmata, Mars , 2005 .

[83]  A. McEwen,et al.  Volcanic activity at Tvashtar Catena, Io , 2005 .

[84]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[85]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[86]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[87]  J. Moore,et al.  Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas , 2001, Nature.

[88]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[89]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[90]  I. Selwyn Sacks,et al.  Triggering of volcanic eruptions , 1998, Nature.

[91]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[92]  T V Johnson,et al.  High-temperature silicate volcanism on Jupiter's moon Io. , 1998, Science.

[93]  F. Nimmo,et al.  VOLCANISM AND TECTONICS ON VENUS , 1998 .

[94]  J. Kargel,et al.  The Volcanic and Tectonic History of Enceladus , 1996 .

[95]  R. H. Brown,et al.  Io: Evidence for Silicate Volcanism in 1986 , 1988, Science.

[96]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[97]  L. Esposito,et al.  Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism , 1984, Science.

[98]  Steven W. Squyres,et al.  Liquid water and active resurfacing on Europa , 1982, Nature.

[99]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[100]  T. Johnson,et al.  Io: Heat flow from small volcanic features , 2015 .

[101]  Rosaly M. C. Lopes,et al.  Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent , 2013 .

[102]  D. Montgomery,et al.  The dual nature of the martian crust: Young lavas and old clastic materials , 2013 .

[103]  A. McEwen,et al.  An assessment of evidence for pingos on Mars using HiRISE , 2010 .

[104]  G. Komatsu,et al.  Possible pingo fields in the Utopia basin, Mars: Geological and climatical implications , 2009 .

[105]  M. Kivelson,et al.  Measurements: A Stronger Case for a Subsurface Ocean at Europa , 2000 .

[106]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .