Signal-space characterization of iterative decoding

By tracing the flow of computations in the iterative decoders for low-density parity-check codes, we formulate a signal-space view for a finite number of iterations in a finite-length code. On a Gaussian channel, maximum a posteriori (MAP) codeword decoding (or "maximum-likelihood decoding") decodes to the codeword signal that is closest to the channel output in Euclidean distance. In contrast, we show that iterative decoding decodes to the "pseudosignal" that has highest correlation with the channel output. The set of pseudosignals corresponds to "pseudocodewords", only a vanishingly small number of which correspond to codewords. We show that some pseudocodewords cause decoding errors, but that there are also pseudocodewords that frequently correct the deleterious effects of other pseudocodewords.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[3]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[4]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[5]  John G. Proakis,et al.  Digital Communications , 1983 .

[6]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[7]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[8]  Peter Adam Hoeher,et al.  Separable MAP "filters" for the decoding of product and concatenated codes , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[9]  Frank R. Kschischang,et al.  On the trellis structure of block codes , 1994, IEEE Trans. Inf. Theory.

[10]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[11]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[12]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[13]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[14]  Sergio Benedetto,et al.  Iterative decoding of serially concatenated convolutional codes , 1996 .

[15]  R. McEliece,et al.  Effective free distance of turbo codes , 1996 .

[16]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[17]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[18]  Robert J. McEliece,et al.  A general algorithm for distributing information in a graph , 1997, Proceedings of IEEE International Symposium on Information Theory.

[19]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[20]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[21]  B. Frey,et al.  Skewness and pseudocodewords in iterative decoding , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[22]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[23]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[24]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..

[25]  T. Richardson Turbo-decoding from a geometric perspective , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[26]  R.J. McEliece,et al.  Iterative decoding on graphs with a single cycle , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[27]  M. Luby,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  Yair Weiss,et al.  Correctness of Local Probability Propagation in Graphical Models with Loops , 2000, Neural Computation.

[29]  T. Richardson,et al.  Design of provably good low-density parity check codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[30]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[31]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[32]  G. Forney,et al.  Iterative Decoding of Tail-Biting Trellises and Connections with Symbolic Dynamics , 2001 .

[33]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .