A trajectorial approach to the gradient flow properties of Langevin-Smoluchowski diffusions
暂无分享,去创建一个
Walter Schachermayer | Ioannis Karatzas | Bertram Tschiderer | I. Karatzas | W. Schachermayer | B. Tschiderer | Bertram Tschiderer
[1] Mark H. A. Davis,et al. A deterministic approach to optimal stopping with application to a prophet inequality , 1993 .
[2] Walter Schachermayer,et al. Trajectorial dissipation and gradient flow for the relative entropy in Markov chains , 2021, Commun. Inf. Syst..
[3] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[4] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[5] I. Karatzas,et al. Trajectorial Otto calculus , 2018, 1811.08686.
[6] Christian L'eonard. Some properties of path measures , 2013, 1308.0217.
[7] Christian L'eonard. On the convexity of the entropy along entropic interpolations , 2013, 1310.1274.
[8] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[9] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[10] X. Mao,et al. Stochastic Differential Equations and Applications , 1998 .
[11] E. Carlen,et al. Entropy production by block variable summation and central limit theorems , 1991 .
[12] Hans Föllmer,et al. An entropy approach to the time reversal of diffusion processes , 1985 .
[13] B. M. Fulk. MATH , 1992 .
[14] N. H. Bingham,et al. 16. Probability, Statistics and Optimization: A Tribute to Peter Whittle , 1995 .
[15] A. Kolmogoroff,et al. Zur Umkehrbarkeit der statistischen Naturgesetze , 1937 .
[16] J. Elgin. The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .
[17] Dario Cordero-Erausquin,et al. Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .
[18] L. Rogers. Smooth Transition Densities for One‐Dimensional Diffusions , 1985 .
[19] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[20] P. Meyer. Sur une transformation du mouvement brownien due à Jeulin et Yor , 1994 .
[21] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[22] E. Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique , 1932 .
[23] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[24] É. Pardoux,et al. Grossissement d'une filtration et retournement du temps d'une diffusion , 1986 .
[25] L. Boltzmann. Ueber die sogenannteH-Curve , 1898 .
[26] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[27] U. Haussmann,et al. TIME REVERSAL OF DIFFUSIONS , 1986 .
[28] M. Fathi. A gradient flow approach to large deviations for diffusion processes , 2014, 1405.3910.
[29] Hans Föllmer,et al. Time reversal on Wiener space , 1986 .
[30] C. Gardiner. Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .
[31] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[32] Richard Jordan,et al. An Extended Variational Principle , 1995 .
[33] C. Villani. Topics in Optimal Transportation , 2003 .
[34] Benjamin Jourdain,et al. A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations , 2011, 1107.3300.
[35] L. Bachelier,et al. Théorie de la spéculation , 1900 .
[36] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[37] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[38] W. Schachermayer,et al. A trajectorial interpretation of Doob's martingale inequalities , 2012, 1202.0447.
[39] Z. Schuss. Singular Perturbation Methods in Stochastic Differential Equations of Mathematical Physics , 1980 .
[40] C. Villani,et al. ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .
[41] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[42] I. Gentil,et al. An entropic interpolation proof of the HWI inequality , 2018, Stochastic Processes and their Applications.
[43] O. Johnson. Information Theory And The Central Limit Theorem , 2004 .
[44] Stefan Adams,et al. Large deviations and gradient flows , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[45] Christian L'eonard,et al. Transport Inequalities. A Survey , 2010, 1003.3852.
[46] Pietro Siorpaes,et al. Pathwise versions of the Burkholder-Davis-Gundy inequality , 2013, 1305.6188.
[47] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .
[48] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[49] C. Villani. Optimal Transport: Old and New , 2008 .
[50] Ludwig Boltzmann,et al. Vorlesungen über Gastheorie , 2009 .
[51] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[52] S. A. Sherman,et al. Providence , 1906 .