Bayesian outlier rejection and state estimation

An outlier is a data point that contains no information about the system to be estimated. A procedure is developed, using a Bayesian cost criterion, to detect and eliminate outliers from a data base and at the same time provide estimates of the state of a dynamical system. The approach is applied to a Gauss-Markov discrete-time system and to a parameter estimation problem. For the latter case, exact solutions of estimator bias and convariance are obtained and conditions for filter divergence are discussed. The approach in this paper differs from others in that a maximum a posteriori estimate is obtained over long block lengths of data so that clustering schemes can be employed.

[1]  Terrence P. McGarty Fault tolerant estimates of monopulse parameters in the presence of interference , 1975 .

[2]  Kim B. Housewright,et al.  Derivation and evaluation of improved tracking filter for use in dense multitarget environments , 1974, IEEE Trans. Inf. Theory.

[3]  Yoshikazu Sawaragi,et al.  State estimation for continuous-time system with interrupted observation , 1973, CDC 1973.

[4]  R. Singer,et al.  New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments , 1973 .

[5]  Yoshikazu Sawaragi,et al.  Sequential State Estimation with Interrupted Observation , 1972, Inf. Control..

[6]  Jayant G. Deshpande,et al.  Optimal adaptive control: A non-linear separation theorem† , 1972 .

[7]  A. Jaffer,et al.  Optimal sequential estimation of discrete processes with Markov interrupted observations , 1971 .

[8]  Amin G. Jaffer,et al.  Recursive Bayesian estimation with uncertain observation (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[9]  Demetrios G. Lainiotis,et al.  Joint Detection, Estimation and System Identification , 1971, Inf. Control..

[10]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[11]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[12]  Lawrence S. Mayer A METHOD OF CLUSTER ANALYSIS WHEN THERE EXIST MULTIPLE INDICATORS OF A THEORETIC CONCEPT , 1971 .

[13]  W. Stefansky Rejecting Outliers by Maximum Normed Residual , 1971 .

[14]  Robert M. Haralick,et al.  An Iterative Clustering Procedure , 1970, IEEE Trans. Syst. Man Cybern..

[15]  Andrew P. Sage,et al.  Nonlinear sequential algorithms for estimation under uncertainty , 1970, Inf. Sci..

[16]  Nasser E. Nahi,et al.  Optimal recursive estimation with uncertain observation , 1969, IEEE Trans. Inf. Theory.

[17]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[18]  Yu-Chi Ho,et al.  On pattern classification algorithms--Introduction and survey , 1968 .

[19]  David Middleton,et al.  Simultaneous optimum detection and estimation of signals in noise , 1968, IEEE Trans. Inf. Theory.

[20]  J. Gower A comparison of some methods of cluster analysis. , 1967, Biometrics.

[21]  John D. Spragins,et al.  Learning without a teacher , 1966, IEEE Trans. Inf. Theory.

[22]  A W EDWARDS,et al.  A METHOD FOR CLUSTER ANALYSIS. , 1965, Biometrics.

[23]  Thomas S. Ferguson,et al.  On the Rejection of Outliers , 1961 .

[24]  Bruno De Finetti,et al.  The Bayesian Approach to the Rejection of Outliers , 1961 .

[25]  Thomas Kailath,et al.  Correlation detection of signals perturbed by a random channel , 1960, IRE Trans. Inf. Theory.

[26]  C. Daniel Locating Outliers in Factorial Experiments , 1960 .

[27]  F. J. Anscombe,et al.  Rejection of Outliers , 1960 .