On Sturmian and episturmian words, and related topics
暂无分享,去创建一个
[1] Giuseppe Pirillo,et al. Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..
[2] Giuseppe Pirillo,et al. Inequalities characterizing standard Sturmian and episturmian words , 2005, Theor. Comput. Sci..
[3] Patrice Séébold,et al. Conjugation of standard morphisms and a generalization of singular words , 2003 .
[4] Jean Berstel,et al. Recent Results on Extensions of Sturmian Words , 2002, Int. J. Algebra Comput..
[5] Amy Glen. Conjugates of characteristic Sturmian words generated by morphisms , 2004, Eur. J. Comb..
[6] Jean Berstel,et al. Axel Thue's work on repetitions in words , 1992 .
[7] Christophe Reutenauer,et al. Palindromic factors of billiard words , 2005, Theor. Comput. Sci..
[8] J. Shallit,et al. Automatic Sequences: Contents , 2003 .
[9] Jean Berstel,et al. Recent Results on Sturmian Words , 1995, Developments in Language Theory.
[10] Jeffrey Shallit,et al. Automatic Sequences by Jean-Paul Allouche , 2003 .
[11] Amy Glen. Powers in a class of A-strict standard episturmian words , 2007, Theor. Comput. Sci..
[12] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[13] Filippo Mignosi,et al. Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..
[14] Giuseppe Pirillo,et al. Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..
[15] Underwood Dudley. Elementary Number Theory , 1978 .
[16] Filippo Mignosi,et al. Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..
[17] Tom C. Brown,et al. Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.
[18] Giuseppe Pirillo,et al. Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..
[19] David Damanik,et al. The Index of Sturmian Sequences , 2002, Eur. J. Comb..
[20] Drew Vandeth,et al. Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..
[21] Y. Bugeaud,et al. On the complexity of algebraic numbers , II . Continued fractions by , 2006 .
[22] Jacques Justin. Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..
[23] Jean Berstel,et al. A Characterization of Sturmian Morphisms , 1993, MFCS.
[24] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[25] Luca Q. Zamboni,et al. INITIAL POWERS OF STURMIAN WORDS , 2001 .
[26] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[27] Jean-Paul Allouche,et al. Transcendence of Sturmian or Morphic Continued Fractions , 2001 .
[28] Giuseppe Pirillo,et al. Fractional powers in Sturmian words , 2001, Theor. Comput. Sci..
[29] Zhi-Xiong Wen,et al. Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..
[30] Wai-fong Oman,et al. SYMMETRIC FIBONACCI WORDS * , 1991 .
[31] Jean Berstel,et al. On the Index of Sturmian Words , 1999, Jewels are Forever.
[32] G. Paun,et al. Jewels are Forever , 1999, Springer Berlin Heidelberg.
[33] Aldo de Luca. A Division Property of the Fibonacci Word , 1995, Inf. Process. Lett..
[34] David Burton. Elementary Number Theory , 1976 .
[35] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[36] Stefan Sokołowski,et al. Mathematical Foundations of Computer Science 1993 , 1993, Lecture Notes in Computer Science.
[37] Jean-Paul Allouche,et al. Palindrome complexity , 2003, Theor. Comput. Sci..
[38] Aldo de Luca,et al. Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..
[39] Srecko Brlek,et al. On The Palindromic Complexity Of Infinite Words , 2004, Int. J. Found. Comput. Sci..
[40] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[41] Aldo de Luca,et al. A Combinatorial Property of the Fibonacci Words , 1981, Inf. Process. Lett..
[42] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[43] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[44] Amy Glen. Occurrences of palindromes in characteristic Sturmian words , 2006, Theor. Comput. Sci..
[45] Giuseppe Pirillo,et al. Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..
[46] Y. Bugeaud,et al. On the complexity of algebraic numbers I. Expansions in integer bases , 2005, math/0511674.