On Sturmian and episturmian words, and related topics

Combinatorics on words plays a fundamental role in various fields of mathematics, not to mention its relevance in theoretical computer science and physics. Most renowned among its branches is the theory of infinite binary sequences called Sturmian words, which are fascinating in many respects, having been studied from combinatorial, algebraic, and geometric points of view. The most well-known example of a Sturmian word is the ubiquitous Fibonacci word, the importance of which lies in combinatorial pattern matching and the theory of words. Properties of the Fibonacci word and, more generally, Sturmian words have been extensively studied, not only because of their significance in discrete mathematics, but also due to their practical applications in computer imagery (digital straightness), theoretical physics (quasicrystal modelling) and molecular biology.

[1]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[2]  Giuseppe Pirillo,et al.  Inequalities characterizing standard Sturmian and episturmian words , 2005, Theor. Comput. Sci..

[3]  Patrice Séébold,et al.  Conjugation of standard morphisms and a generalization of singular words , 2003 .

[4]  Jean Berstel,et al.  Recent Results on Extensions of Sturmian Words , 2002, Int. J. Algebra Comput..

[5]  Amy Glen Conjugates of characteristic Sturmian words generated by morphisms , 2004, Eur. J. Comb..

[6]  Jean Berstel,et al.  Axel Thue's work on repetitions in words , 1992 .

[7]  Christophe Reutenauer,et al.  Palindromic factors of billiard words , 2005, Theor. Comput. Sci..

[8]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[9]  Jean Berstel,et al.  Recent Results on Sturmian Words , 1995, Developments in Language Theory.

[10]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[11]  Amy Glen Powers in a class of A-strict standard episturmian words , 2007, Theor. Comput. Sci..

[12]  Valérie Berthé,et al.  Initial powers of Sturmian sequences , 2006 .

[13]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[14]  Giuseppe Pirillo,et al.  Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..

[15]  Underwood Dudley Elementary Number Theory , 1978 .

[16]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[17]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[18]  Giuseppe Pirillo,et al.  Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..

[19]  David Damanik,et al.  The Index of Sturmian Sequences , 2002, Eur. J. Comb..

[20]  Drew Vandeth,et al.  Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..

[21]  Y. Bugeaud,et al.  On the complexity of algebraic numbers , II . Continued fractions by , 2006 .

[22]  Jacques Justin Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..

[23]  Jean Berstel,et al.  A Characterization of Sturmian Morphisms , 1993, MFCS.

[24]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[25]  Luca Q. Zamboni,et al.  INITIAL POWERS OF STURMIAN WORDS , 2001 .

[26]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[27]  Jean-Paul Allouche,et al.  Transcendence of Sturmian or Morphic Continued Fractions , 2001 .

[28]  Giuseppe Pirillo,et al.  Fractional powers in Sturmian words , 2001, Theor. Comput. Sci..

[29]  Zhi-Xiong Wen,et al.  Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..

[30]  Wai-fong Oman,et al.  SYMMETRIC FIBONACCI WORDS * , 1991 .

[31]  Jean Berstel,et al.  On the Index of Sturmian Words , 1999, Jewels are Forever.

[32]  G. Paun,et al.  Jewels are Forever , 1999, Springer Berlin Heidelberg.

[33]  Aldo de Luca A Division Property of the Fibonacci Word , 1995, Inf. Process. Lett..

[34]  David Burton Elementary Number Theory , 1976 .

[35]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[36]  Stefan Sokołowski,et al.  Mathematical Foundations of Computer Science 1993 , 1993, Lecture Notes in Computer Science.

[37]  Jean-Paul Allouche,et al.  Palindrome complexity , 2003, Theor. Comput. Sci..

[38]  Aldo de Luca,et al.  Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..

[39]  Srecko Brlek,et al.  On The Palindromic Complexity Of Infinite Words , 2004, Int. J. Found. Comput. Sci..

[40]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[41]  Aldo de Luca,et al.  A Combinatorial Property of the Fibonacci Words , 1981, Inf. Process. Lett..

[42]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[43]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[44]  Amy Glen Occurrences of palindromes in characteristic Sturmian words , 2006, Theor. Comput. Sci..

[45]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[46]  Y. Bugeaud,et al.  On the complexity of algebraic numbers I. Expansions in integer bases , 2005, math/0511674.