Replacement of the Double Meropenem Disc Test with a Lateral Flow Assay for the Detection of Carbapenemase-Producing Enterobacterales and Pseudomonas aeruginosa in Clinical Laboratory Practice
暂无分享,去创建一个
E. Protonotariou | L. Skoura | G. Meletis | P. Mantzana | A. Tychala | Angeliki Kassomenaki | Charikleia Katsanou | Aikaterini Daviti | Lydia Kouroudi
[1] Consuelo Velázquez-Acosta,et al. Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico , 2023, Antibiotics.
[2] R. Bonnin,et al. Comment on: Comparison of three lateral flow immunochromatographic assays for the rapid detection of KPC, NDM, IMP, VIM and OXA-48 carbapenemases in Enterobacterales. , 2022, Journal of Antimicrobial Chemotherapy.
[3] J. Daduang,et al. Recombinase Polymerase Amplification Combined with Lateral Flow Strip for Rapid Detection of OXA-48-like Carbapenemase Genes in Enterobacterales , 2022, Antibiotics.
[4] T. Naas,et al. The Revolution of Lateral Flow Assay in the Field of AMR Detection , 2022, Diagnostics.
[5] P. Nordmann,et al. Evaluation of novel immunological rapid test (K.N.I.V.O. Detection K-Set) for rapid detection of carbapenemase producers in multidrug-resistant gram negatives. , 2022, Diagnostic microbiology and infectious disease.
[6] S. Alfei,et al. β-Lactam Antibiotics and β-Lactamase Enzymes Inhibitors, Part 2: Our Limited Resources , 2022, Pharmaceuticals.
[7] L. Reyes,et al. Comparative Evaluation of Phenotypic Synergy Tests versus RESIST-4 O.K.N.V. and NG Test Carba 5 Lateral Flow Immunoassays for the Detection and Differentiation of Carbapenemases in Enterobacterales and Pseudomonas aeruginosa , 2022, Microbiology spectrum.
[8] Sameer S. Kadri,et al. IDSA guidance and ESCMID guidelines: complementary approaches toward a care standard for MDR Gram-negative infections. , 2022, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[9] S. Metallidis,et al. Polyclonal Endemicity of Carbapenemase-Producing Klebsiella pneumoniae in ICUs of a Greek Tertiary Care Hospital , 2022, Antibiotics.
[10] M. Castanheira,et al. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection , 2021, JAC-antimicrobial resistance.
[11] S. Pournaras,et al. Detection of KPC, NDM and VIM-Producing Organisms Directly from Rectal Swabs by a Multiplex Lateral Flow Immunoassay , 2021, Microorganisms.
[12] A. Tsakris,et al. Clonal outbreak caused by VIM-4-producing Proteus mirabilis in a tertiary care Greek hospital. , 2020, International journal of antimicrobial agents.
[13] P. Tamma,et al. Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates , 2018, Journal of Clinical Microbiology.
[14] S. Partridge,et al. Mobile Genetic Elements Associated with Antimicrobial Resistance , 2018, Clinical Microbiology Reviews.
[15] E. Roilides,et al. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa in an endemic area: comparison with global data , 2018, European Journal of Clinical Microbiology & Infectious Diseases.
[16] P. Tamma,et al. Comparing the Outcomes of Patients With Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[17] G. Meletis,et al. Carbapenem resistance: overview of the problem and future perspectives , 2016, Therapeutic advances in infectious disease.
[18] M. Exindari,et al. Accumulation of carbapenem resistance mechanisms in VIM-2-producing Pseudomonas aeruginosa under selective pressure , 2014, European Journal of Clinical Microbiology & Infectious Diseases.
[19] G. Daikos,et al. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions , 2012, Clinical Microbiology Reviews.
[20] M. Exindari,et al. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. , 2012, Hippokratia.
[21] P. Nordmann,et al. OXA-48-like carbapenemases: the phantom menace. , 2012, The Journal of antimicrobial chemotherapy.
[22] C. Urban,et al. Klebsiella pneumoniae Carbapenemases in Enterobacteriaceae: History, Evolution, and Microbiology Concerns , 2012, Pharmacotherapy.
[23] D. Livermore,et al. The emerging NDM carbapenemases. , 2011, Trends in microbiology.
[24] P. Nordmann,et al. Value of the Modified Hodge Test for Detection of Emerging Carbapenemases in Enterobacteriaceae , 2011, Journal of Clinical Microbiology.
[25] A. Corso,et al. Sensitive and Specific Modified Hodge Test for KPC and Metallo-Beta- Lactamase Detection in Pseudomonas aeruginosa by Use of a Novel Indicator Strain, Klebsiella pneumoniae ATCC 700603 , 2011, Journal of Clinical Microbiology.
[26] Wei-hua Zhao,et al. IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons , 2011, Critical reviews in microbiology.
[27] Wei-hua Zhao,et al. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. , 2011, Future microbiology.
[28] P. Nordmann,et al. How To Detect NDM-1 Producers , 2010, Journal of Clinical Microbiology.
[29] S. Pournaras,et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. , 2010, The Journal of antimicrobial chemotherapy.
[30] P. Nordmann,et al. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. , 2009, The Lancet. Infectious diseases.
[31] P. Nordmann,et al. Carbapenemases: molecular diversity and clinical consequences. , 2007, Future microbiology.
[32] K. Bush,et al. Carbapenemases: the Versatile β-Lactamases , 2007, Clinical Microbiology Reviews.
[33] D. Landman,et al. Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.
[34] N. Høiby,et al. OXA-type carbapenemases. , 2006, The Journal of antimicrobial chemotherapy.
[35] Timothy R. Walsh,et al. Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.
[36] M. Ferraro. Performance standards for antimicrobial susceptibility testing , 2001 .
[37] R. Ambler,et al. The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.