Replacement of the Double Meropenem Disc Test with a Lateral Flow Assay for the Detection of Carbapenemase-Producing Enterobacterales and Pseudomonas aeruginosa in Clinical Laboratory Practice

The prompt detection of carbapenemases among Gram-negative bacteria isolated from patients’ clinical infection samples and surveillance cultures is important for the implementation of infection control measures. In this context, we evaluated the effectiveness of replacing phenotypic tests for the detection of carbapenemase producers with the immunochromatographic Carbapenem-Resistant K.N.I.V.O. Detection K-Set lateral flow assay (LFA). In total, 178 carbapenem-resistant Enterobacterales and 32 carbapenem-resistant Pseudomonas aeruginosa isolated in our hospital were tested with both our established phenotypic and molecular testing procedures and the LFA. The Kappa coefficient of agreement for Enterobacterales was 0.85 (p < 0.001) and 0.6 (p < 0.001) for P. aeruginosa. No major disagreements were observed and notably, in many cases, the LFA detected more carbapenemases than the double meropenem disc test, especially regarding OXA-48 in Enterobacterales and VIM in P. aeruginosa. Overall, the Carbapenem-Resistant K.N.I.V.O. Detection K-Set was very effective and at least equivalent to the standard procedures used in our lab. However, it was much faster as it provided results in 15 min compared to a minimum of 18–24 h for the phenotypic tests.

[1]  Consuelo Velázquez-Acosta,et al.  Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico , 2023, Antibiotics.

[2]  R. Bonnin,et al.  Comment on: Comparison of three lateral flow immunochromatographic assays for the rapid detection of KPC, NDM, IMP, VIM and OXA-48 carbapenemases in Enterobacterales. , 2022, Journal of Antimicrobial Chemotherapy.

[3]  J. Daduang,et al.  Recombinase Polymerase Amplification Combined with Lateral Flow Strip for Rapid Detection of OXA-48-like Carbapenemase Genes in Enterobacterales , 2022, Antibiotics.

[4]  T. Naas,et al.  The Revolution of Lateral Flow Assay in the Field of AMR Detection , 2022, Diagnostics.

[5]  P. Nordmann,et al.  Evaluation of novel immunological rapid test (K.N.I.V.O. Detection K-Set) for rapid detection of carbapenemase producers in multidrug-resistant gram negatives. , 2022, Diagnostic microbiology and infectious disease.

[6]  S. Alfei,et al.  β-Lactam Antibiotics and β-Lactamase Enzymes Inhibitors, Part 2: Our Limited Resources , 2022, Pharmaceuticals.

[7]  L. Reyes,et al.  Comparative Evaluation of Phenotypic Synergy Tests versus RESIST-4 O.K.N.V. and NG Test Carba 5 Lateral Flow Immunoassays for the Detection and Differentiation of Carbapenemases in Enterobacterales and Pseudomonas aeruginosa , 2022, Microbiology spectrum.

[8]  Sameer S. Kadri,et al.  IDSA guidance and ESCMID guidelines: complementary approaches toward a care standard for MDR Gram-negative infections. , 2022, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[9]  S. Metallidis,et al.  Polyclonal Endemicity of Carbapenemase-Producing Klebsiella pneumoniae in ICUs of a Greek Tertiary Care Hospital , 2022, Antibiotics.

[10]  M. Castanheira,et al.  Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection , 2021, JAC-antimicrobial resistance.

[11]  S. Pournaras,et al.  Detection of KPC, NDM and VIM-Producing Organisms Directly from Rectal Swabs by a Multiplex Lateral Flow Immunoassay , 2021, Microorganisms.

[12]  A. Tsakris,et al.  Clonal outbreak caused by VIM-4-producing Proteus mirabilis in a tertiary care Greek hospital. , 2020, International journal of antimicrobial agents.

[13]  P. Tamma,et al.  Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates , 2018, Journal of Clinical Microbiology.

[14]  S. Partridge,et al.  Mobile Genetic Elements Associated with Antimicrobial Resistance , 2018, Clinical Microbiology Reviews.

[15]  E. Roilides,et al.  Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa in an endemic area: comparison with global data , 2018, European Journal of Clinical Microbiology & Infectious Diseases.

[16]  P. Tamma,et al.  Comparing the Outcomes of Patients With Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[17]  G. Meletis,et al.  Carbapenem resistance: overview of the problem and future perspectives , 2016, Therapeutic advances in infectious disease.

[18]  M. Exindari,et al.  Accumulation of carbapenem resistance mechanisms in VIM-2-producing Pseudomonas aeruginosa under selective pressure , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[19]  G. Daikos,et al.  Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions , 2012, Clinical Microbiology Reviews.

[20]  M. Exindari,et al.  Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. , 2012, Hippokratia.

[21]  P. Nordmann,et al.  OXA-48-like carbapenemases: the phantom menace. , 2012, The Journal of antimicrobial chemotherapy.

[22]  C. Urban,et al.  Klebsiella pneumoniae Carbapenemases in Enterobacteriaceae: History, Evolution, and Microbiology Concerns , 2012, Pharmacotherapy.

[23]  D. Livermore,et al.  The emerging NDM carbapenemases. , 2011, Trends in microbiology.

[24]  P. Nordmann,et al.  Value of the Modified Hodge Test for Detection of Emerging Carbapenemases in Enterobacteriaceae , 2011, Journal of Clinical Microbiology.

[25]  A. Corso,et al.  Sensitive and Specific Modified Hodge Test for KPC and Metallo-Beta- Lactamase Detection in Pseudomonas aeruginosa by Use of a Novel Indicator Strain, Klebsiella pneumoniae ATCC 700603 , 2011, Journal of Clinical Microbiology.

[26]  Wei-hua Zhao,et al.  IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons , 2011, Critical reviews in microbiology.

[27]  Wei-hua Zhao,et al.  Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. , 2011, Future microbiology.

[28]  P. Nordmann,et al.  How To Detect NDM-1 Producers , 2010, Journal of Clinical Microbiology.

[29]  S. Pournaras,et al.  A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. , 2010, The Journal of antimicrobial chemotherapy.

[30]  P. Nordmann,et al.  The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. , 2009, The Lancet. Infectious diseases.

[31]  P. Nordmann,et al.  Carbapenemases: molecular diversity and clinical consequences. , 2007, Future microbiology.

[32]  K. Bush,et al.  Carbapenemases: the Versatile β-Lactamases , 2007, Clinical Microbiology Reviews.

[33]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[34]  N. Høiby,et al.  OXA-type carbapenemases. , 2006, The Journal of antimicrobial chemotherapy.

[35]  Timothy R. Walsh,et al.  Metallo-β-Lactamases: the Quiet before the Storm? , 2005, Clinical Microbiology Reviews.

[36]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .

[37]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.