A Combined Finite Element and Multiscale Finite Element Method for the Multiscale Elliptic Problems

The oversampling multiscale finite element method (MsFEM) is one of the most popular methods for simulating composite materials and flows in porous media which may have many scales. But the method may be inefficient in some portions of the computational domain, e.g., near long narrow channels inside the domain due to the fact that the high-conductivity features cannot be localized within a coarse-grid block, or in a near-well region since the solution behaves like the Green function there. In this paper we develop a combined finite element and multiscale finite element method (FE-MsFEM), which deals with such portions by using the standard finite element method on a fine mesh and the other portions by the oversampling MsFEM. The transmission conditions across the FE-MSFE interface is treated by the penalty technique. To illustrate this idea, a rigorous error analysis for this FE-MsFEM is given under the assumption that the diffusion coefficient is periodic. Numerical experiments are carried out for the el...

[1]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[2]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[3]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[4]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[5]  Todd Arbogast,et al.  Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .

[6]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2008, SIAM J. Numer. Anal..

[7]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[8]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[9]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[10]  B. Engquist,et al.  Wavelet-Based Numerical Homogenization with Applications , 2002 .

[11]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[12]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..

[13]  J. Hyman,et al.  The Black Box Multigrid Numerical Homogenization Algorithm , 1998 .

[14]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[15]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[16]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[17]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[18]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[19]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[20]  Zhiming Chen,et al.  Numerical Homogenization of Well Singularities in the Flow Transport through Heterogeneous Porous Media , 2003, Multiscale Model. Simul..

[21]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[22]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[23]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[24]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[26]  Haijun Wu,et al.  Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: hp Version , 2012, SIAM J. Numer. Anal..

[27]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[28]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .

[29]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[32]  Alessandro Russo,et al.  Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles , 1996 .

[33]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[34]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[35]  C. L. Farmer,et al.  Upscaling: a review , 2002 .

[36]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[37]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[38]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[39]  Ralf Massjung An hp-error estimate for an unfitted Discontinuous Galerkin Method applied to elliptic interface problems , 2009 .

[40]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[41]  M. Avellaneda,et al.  Compactness methods in the theory of homogenization , 1987 .

[42]  B. Engquist,et al.  Wavelet-Based Numerical Homogenization , 1998 .

[43]  Yalchin Efendiev,et al.  Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..

[44]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[45]  Pingwen Zhang,et al.  Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..

[46]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[47]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[48]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[49]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[50]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[51]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .