Convenient Category of Processes and Simulations 1: Modulo Strong Bisimilarity

Deep categorical analyses of various aspects of concurrency have been developed, but a uniform categorical treatment of the very first concepts seems to be hindered by the fact that the existing representations of processes as bisimilarity classes do not provide a sufficient account of computational morphisms.

[1]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[2]  Samson Abramsky,et al.  Interaction Categories , 1993, Theory and Formal Methods.

[3]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[4]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[5]  M. W. Shields An Introduction to Automata Theory , 1988 .

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[8]  R. J. van Glabbeek,et al.  Comparative Concurrency Semantics and Refinement of Actions , 1996 .

[9]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[10]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[11]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[12]  Dusko Pavlovic,et al.  Categorical interpolation: descent and the Beck−Chevalley condition without direct images , 1991 .

[13]  Dusko Pavlovic Categorical Logic of Concurrency and Interaction I: Synchronous Processes , 1994, Theory and Formal Methods.

[14]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[15]  Ilaria Castellani Bisimulations and Abstraction Homomorphisms , 1985, TAPSOFT, Vol.1.

[16]  Glynn Winskel,et al.  Bisimulation and open maps , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[17]  David B. Benson,et al.  Bisimulation of Automata , 1988, Inf. Comput..

[18]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[19]  Dusko Pavlovic,et al.  Maps II: Chasing Diagrams in Categorical Proof Theory , 1996, Log. J. IGPL.