Interactive and coordinated visualization approaches for biological data analysis

The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein-protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.

[1]  Jonathan C. Roberts,et al.  Click and Brush: A Novel Way of Finding Correlations and Relationships in Visualizations , 2005, TPCG.

[2]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[3]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[4]  Jessie B. Kennedy,et al.  MaTSE: the gene expression time-series explorer , 2013, BMC Bioinformatics.

[5]  Angel Rubio,et al.  Advances in network-based metabolic pathway analysis and gene expression data integration , 2015, Briefings Bioinform..

[6]  Sushil Jajodia,et al.  Managing attack graph complexity through visual hierarchical aggregation , 2004, VizSEC/DMSEC '04.

[7]  Maximilian Scherr,et al.  Multiple and Coordinated Views in Information Visualization , 2009 .

[8]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[9]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jarkko Venna,et al.  Comparison of Visualization Methods for an Atlas of Gene Expression Data Sets , 2007, Inf. Vis..

[11]  Pierre Dragicevic,et al.  Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[12]  Inanç Birol,et al.  Hive plots - rational approach to visualizing networks , 2012, Briefings Bioinform..

[13]  Hong Chen,et al.  Compound Brushing Explained† , 2004, Inf. Vis..

[14]  Maria Jesus Martin,et al.  BioJS: an open source JavaScript framework for biological data visualization , 2013, Bioinform..

[15]  Zahir Tari,et al.  A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis , 2014, IEEE Transactions on Emerging Topics in Computing.

[16]  Jason H. Moore,et al.  Adapting bioinformatics curricula for big data , 2015, Briefings Bioinform..

[17]  Zhenjun Hu,et al.  VisANT: data-integrating visual framework for biological networks and modules , 2005, Nucleic Acids Res..

[18]  Subha Madhavan,et al.  G-DOC Plus – an integrative bioinformatics platform for precision medicine , 2016, BMC Bioinformatics.

[19]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[20]  Rahul Singh,et al.  XMAS: An Experiential Approach for Visualization, Analysis, and Exploration of Time Series Microarray Data , 2008, BIRD.

[21]  Tamara Munzner,et al.  MizBee: A Multiscale Synteny Browser , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Chao Wang,et al.  iGPSe: A visual analytic system for integrative genomic based cancer patient stratification , 2014, BMC Bioinformatics.

[23]  Dieter Schmalstieg,et al.  StratomeX: Visual Analysis of Large‐Scale Heterogeneous Genomics Data for Cancer Subtype Characterization , 2012, Comput. Graph. Forum.

[24]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[25]  Geeta Sikka,et al.  Recent Techniques of Clustering of Time Series Data: A Survey , 2012 .

[26]  Christopher J. Rawlings,et al.  Graph-based analysis and visualization of experimental results with ONDEX , 2006, Bioinform..

[27]  M. Tomita,et al.  Pathway Projector: Web-Based Zoomable Pathway Browser Using KEGG Atlas and Google Maps API , 2009, PloS one.

[28]  Anita Burgun-Parenthoine,et al.  Exploring and visualizing multidimensional data in translational research platforms , 2016, Briefings Bioinform..

[29]  Fabian Beck,et al.  The State of the Art in Visualizing Group Structures in Graphs , 2015, EuroVis.

[30]  Camelia-Mihaela Pintea,et al.  A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop , 2017, Creative Mathematics and Informatics.

[31]  Matthias Klapperstück,et al.  VANTED v2: a framework for systems biology applications , 2012, BMC Systems Biology.

[32]  H. Levkowitz,et al.  Coordinated views to assist exploration of spatio-temporal data: a case study , 2004, Proceedings. Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, 2004..

[33]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[34]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  Dieter Schmalstieg,et al.  ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery , 2014, IEEE Transactions on Visualization and Computer Graphics.

[36]  Jun Tao,et al.  Graphs in Scientific Visualization: A Survey , 2017, Comput. Graph. Forum.

[37]  Hugues Bersini,et al.  A Survey on Filter Techniques for Feature Selection in Gene Expression Microarray Analysis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[38]  Dorothea Emig,et al.  AltAnalyze and DomainGraph: analyzing and visualizing exon expression data , 2010, Nucleic Acids Res..

[39]  Jens Nielsen,et al.  Kiwi: a tool for integration and visualization of network topology and gene-set analysis , 2014, BMC Bioinformatics.

[40]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[41]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[42]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[43]  Zeqian Sheny,et al.  Path visualization for adjacency matrices , 2007 .

[44]  Reinhard Schneider,et al.  Visualizing time-related data in biology, a review , 2013, Briefings Bioinform..

[45]  E. Birney,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Research.

[46]  Jim Davies,et al.  Visual Compression of Workflow Visualizations with Automated Detection of Macro Motifs , 2013, IEEE Transactions on Visualization and Computer Graphics.

[47]  Nicholas Chen,et al.  TreeJuxtaposer : Scalable Tree Comparison using Focus + Context with Guaranteed Visibility , 2006 .

[48]  Jessie Kennedy,et al.  MLCut: Exploring Multi-Level Cuts in Dendrograms for Biological Data , 2016, CGVC.

[49]  Chris Armit,et al.  Visualization of gene expression information within the context of the mouse anatomy , 2014, ArXiv.

[50]  B. Marx The Visual Display of Quantitative Information , 1985 .

[51]  Niklas Elmqvist,et al.  Fluid interaction for information visualization , 2011, Inf. Vis..

[52]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Hans-Peter Lenhof,et al.  BiNA: A Visual Analytics Tool for Biological Network Data , 2014, PloS one.

[54]  Roberto Therón,et al.  BicOverlapper 2.0: visual analysis for gene expression , 2014, Bioinform..

[55]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[56]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[57]  Aedín C. Culhane,et al.  Dimension reduction techniques for the integrative analysis of multi-omics data , 2016, Briefings Bioinform..

[58]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[59]  Anton J. Enright,et al.  Network visualization and analysis of gene expression data using BioLayout Express3D , 2009, Nature Protocols.

[60]  Marc Streit,et al.  Furby: fuzzy force-directed bicluster visualization , 2014, BMC Bioinformatics.

[61]  Mona Singh,et al.  Toward the dynamic interactome: it's about time , 2010, Briefings Bioinform..

[62]  Min Chen,et al.  Conceptualizing Visual Uncertainty in Parallel Coordinates , 2012, Comput. Graph. Forum.

[63]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[64]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[65]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[66]  Kai Li,et al.  Visualization methods for statistical analysis of microarray clusters , 2005, BMC Bioinformatics.

[67]  N. Andrienko,et al.  Coordinated Multiple Views: a Critical View , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[68]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[69]  Anton J. Enright,et al.  Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future , 2015, GigaScience.

[70]  Eun-Kyung Lee,et al.  exploRase: Exploratory Data Analysis of Systems Biology Data , 2006, Fourth International Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV'06).

[71]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[72]  Ryan Miller,et al.  WikiPathways: capturing the full diversity of pathway knowledge , 2015, Nucleic Acids Res..

[73]  Reinhard Schneider,et al.  Arena3D: visualizing time-driven phenotypic differences in biological systems , 2012, BMC Bioinformatics.

[74]  Georgios A. Pavlopoulos,et al.  A reference guide for tree analysis and visualization , 2010, BioData Mining.

[75]  Ben Shneiderman,et al.  Dynamic querying for pattern identification in microarray and genomic data , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[76]  Holger Stitz,et al.  AVOCADO: Visualization of Workflow–Derived Data Provenance for Reproducible Biomedical Research , 2016, bioRxiv.

[77]  Bang Wong,et al.  Pathline: A Tool For Comparative Functional Genomics , 2010, Comput. Graph. Forum.

[78]  Daniel A. Keim,et al.  Visual Analysis of Sets of Heterogeneous Matrices Using Projection‐Based Distance Functions and Semantic Zoom , 2014, Comput. Graph. Forum.

[79]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[80]  Jie Wang,et al.  Discriminative pattern mining and its applications in bioinformatics , 2015, Briefings Bioinform..

[81]  Tamara Munzner,et al.  MulteeSum: A Tool for Comparative Spatial and Temporal Gene Expression Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[82]  Dieter Schmalstieg,et al.  Pathfinder: Visual Analysis of Paths in Graphs , 2016, Comput. Graph. Forum.

[83]  Tamara Munzner,et al.  Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context , 2008, IEEE Transactions on Visualization and Computer Graphics.

[84]  Nuno Nunes,et al.  PathVisio 3: An Extendable Pathway Analysis Toolbox , 2015, PLoS Comput. Biol..

[85]  G. Molenberghs,et al.  SPECTRAL MAP ANALYSIS - A METHOD TO ANALYZE GENE EXPRESSION DATA , 2002 .

[86]  I. Jolliffe Principal Component Analysis , 2002 .

[87]  Jarke J. van Wijk,et al.  Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.

[88]  Ben Shneiderman,et al.  Motif simplification: improving network visualization readability with fan, connector, and clique glyphs , 2013, CHI.

[89]  Heidrun Schumann,et al.  Interactive Lenses for Visualization: An Extended Survey , 2017, Comput. Graph. Forum.

[90]  Avi Ma'ayan,et al.  GATE: software for the analysis and visualization of high-dimensional time series expression data , 2009, Bioinform..

[91]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[92]  Lisa M. Graham,et al.  Gestalt Theory in Interactive Media Design , 2007 .

[93]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[94]  Joana P Gonçalves,et al.  BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data , 2009, BMC Research Notes.

[95]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[96]  Dieter Schmalstieg,et al.  VisBricks: Multiform Visualization of Large, Inhomogeneous Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[97]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[98]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[99]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Heidrun Schumann,et al.  Fisheye Tree Views and Lenses for Graph Visualization , 2006, Tenth International Conference on Information Visualisation (IV'06).

[101]  Chun-Hsi Huang,et al.  Current innovations and future challenges of network motif detection , 2015, Briefings Bioinform..

[102]  Holger Stitz,et al.  TACO: Visualizing Changes in Tables Over Time , 2018, IEEE Transactions on Visualization and Computer Graphics.

[103]  Zohar Yakhini,et al.  Clustering gene expression patterns , 1999, J. Comput. Biol..

[104]  T. Munzner,et al.  Timelines Revisited: A Design Space and Considerations for Expressive Storytelling. , 2016, IEEE transactions on visualization and computer graphics.

[105]  Le Song,et al.  TVNViewer: An interactive visualization tool for exploring networks that change over time or space , 2011, Bioinform..

[106]  Kay Nieselt,et al.  iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data , 2012, BMC Bioinformatics.

[107]  Ziv Bar-Joseph,et al.  STEM: a tool for the analysis of short time series gene expression data , 2006, BMC Bioinformatics.

[108]  Heidrun Schumann,et al.  A Modular Degree-of-Interest Specification for the Visual Analysis of Large Dynamic Networks. , 2013, IEEE transactions on visualization and computer graphics.

[109]  Heidrun Schumann,et al.  Visual Analysis of Bipartite Biological Networks , 2008, VCBM.

[110]  Heidrun Schumann,et al.  A Survey of Multi-faceted Graph Visualization , 2015, EuroVis.

[111]  Jeffrey Heer,et al.  A Tour through the Visualization Zoo , 2010 .

[112]  Dieter Schmalstieg,et al.  enRoute: dynamic path extraction from biological pathway maps for exploring heterogeneous experimental datasets , 2013, BMC Bioinformatics.

[113]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[114]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[115]  Andreas Kerren,et al.  BioVis Explorer: A visual guide for biological data visualization techniques , 2017, PloS one.

[116]  Jos B. T. M. Roerdink,et al.  Interactive Visualization of Gene Regulatory Networks with Associated Gene Expression Time Series Data , 2008, Visualization in Medicine and Life Sciences.

[117]  Bernhard Preim,et al.  Interactive Visual Analysis of Heterogeneous Cohort-Study Data , 2014, IEEE Computer Graphics and Applications.