Learning Compositional Semantics for Open Domain Semantic Parsing

This paper introduces a new approach to learning compositional semantics for open domain semantic parsing. Our approach is called Dependency-based Semantic Composition using Graphs (DeSCoG) and deviates from existing approaches in several ways. First, we remove the need of the lambda calculus by using a graph-based variant of Discourse Representation Structures to represent semantic building blocks and defining new combinatory operations for our graph structures. Second, we propose a probability model to approximate probability distributions over possible semantic compositions. And third, we use a variant of alignment algorithms from machine translation to learn a lexicon. On the Groningen Meaning Bank (a recently released, large-scale, domain-general, semantically annotated corpus; Basile et al. (2012)), where we preprocess sentences with an existing dependency parser, we achieve results significantly better than the baseline. On Geoquery we obtain performance comparable to semantic parsers that were developed specifically for that domain.

[1]  Michael A. Covington,et al.  A Fundamental Algorithm for Dependency Parsing , 2004 .

[2]  Mark Steedman,et al.  Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification , 2010, EMNLP.

[3]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[4]  H. Kamp A Theory of Truth and Semantic Representation , 2008 .

[5]  Ruifang Ge,et al.  Learning for Semantic Parsing Using Statistical Syntactic Parsing Techniques , 2010 .

[6]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[7]  Johan Bos,et al.  Wide-Coverage Semantic Analysis with Boxer , 2008, STEP.

[8]  Daniel Bonevac Discourse Representation Theory , 2012 .

[9]  Khalil Sima'an,et al.  Learning Hierarchical Translation Structure with Linguistic Annotations , 2011, ACL.

[10]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[11]  Johan Bos,et al.  A Survey of Computational Semantics: Representation, Inference and Knowledge in Wide-Coverage Text Understanding , 2011, Lang. Linguistics Compass.

[12]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[13]  Jiayu Zhou,et al.  Using inverse λ and generalization to translate English to formal languages , 2011 .

[14]  Raymond J. Mooney,et al.  A Statistical Semantic Parser that Integrates Syntax and Semantics , 2005, CoNLL.

[15]  Dan Roth,et al.  Confidence Driven Unsupervised Semantic Parsing , 2011, ACL.

[16]  Raymond J. Mooney,et al.  Learning a Compositional Semantic Parser using an Existing Syntactic Parser , 2009, ACL.

[17]  Luke S. Zettlemoyer,et al.  Online Learning of Relaxed CCG Grammars for Parsing to Logical Form , 2007, EMNLP.

[18]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[19]  Hiyan Alshawi,et al.  Deterministic Statistical Mapping of Sentences to Underspecified Semantics , 2011, IWCS.

[20]  Raymond J. Mooney,et al.  Learning for Semantic Parsing with Statistical Machine Translation , 2006, NAACL.

[21]  Federico Sangati,et al.  Accurate Parsing with Compact Tree-Substitution Grammars: Double-DOP , 2011, EMNLP.

[22]  Johan Bos,et al.  Developing a large semantically annotated corpus , 2012, LREC.

[23]  Johan Bos Towards Wide-Coverage Semantic Interpretation , 2005 .

[24]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[25]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[26]  Mark Steedman,et al.  Lexical Generalization in CCG Grammar Induction for Semantic Parsing , 2011, EMNLP.

[27]  Raymond J. Mooney,et al.  Learning for semantic parsing and natural language generation using statistical machine translation techniques , 2007 .

[28]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[29]  Johan Bos,et al.  Towards a large-scale formal semantic lexicon for text processing ! , 2009 .

[30]  Rohit J. Kate,et al.  Using String-Kernels for Learning Semantic Parsers , 2006, ACL.

[31]  Slav Petrov,et al.  Coarse-to-Fine Natural Language Processing , 2011, Theory and Applications of Natural Language Processing.

[32]  James R. Curran,et al.  Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models , 2007, Computational Linguistics.

[33]  James F. Allen,et al.  Deep Semantic Analysis of Text , 2008, STEP.

[34]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[35]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[36]  Jiayu Zhou,et al.  Using Inverse lambda and Generalization to Translate English to Formal Languages , 2011, IWCS.

[37]  Ming-Wei Chang,et al.  Driving Semantic Parsing from the World’s Response , 2010, CoNLL.

[38]  Hoifung Poon,et al.  Unsupervised Semantic Parsing , 2009, EMNLP.