Effects of Particle Size and Composite Composition of Carbon Microparticles as Reinforcement Components on Resin-Based Brake Pad Performance

This study aims to investigate the effect of particle size and composition of bamboo and clove leaves as reinforcement components on resin-based brake pad performance. Bamboo fibers contain cellulose and lignin, making them better mechanical properties compared to glass fibers. Clove leaves due to their containment of oil components can be used, playing roles in binding bamboo with resin material. In short, experiments were done by involving polymerization of polyester resin as an adhesive with methyl ethyl ketone peroxide (MEKP) at room temperature. The composition of polyester/MEKP/reinforcing components was fixed at a mass ratio of 10/1/1.76 and the particle size of the reinforcing components were 582 and 250 m. Reinforcing components were mixed carbonized bamboo fiber and dried clove leaves with a ratio of 4/1; 7/1; and 10/1. The results showed that smaller particles has better mechanical properties, and the more amount of bamboo particles give positive impacts on the material hardness. The best hardness value (reaching 24 N/cm2) and smallest pore volume (0.0213 cm3) were obtained when using the ratio of 10:1. While the smallest weight loss of mass at the rate of 0.1225 g/min was obtained by the ratio of 7/1. The largest friction coefficient and lowest wear rate were obtained by 4/1 with a value of 0.1108 and 1.08 g/s.mm2, respectively. This study demonstrates the use of biomass waste such as bamboo fiber and dried clove leaves as an alternative to asbestos and reduces the abundant waste of bamboo powder and dried clove leaves in Indonesia.

[1]  S. Lajevardi,et al.  Effects of pore-crack relative location on crack propagation in porous media using XFEM method , 2019, Theoretical and Applied Fracture Mechanics.

[2]  Sumiyanto Sumiyanto,et al.  ANALISA PENGUJIAN GESEK, AUS DAN LENTUR PADA KAMPAS REM TROMOL SEPEDA MOTOR , 2019, Bina Teknika.

[3]  C. Pinca-Bretotean,et al.  Laboratory testing of brake pads made of organic materials intended for small and medium vehicles , 2018, IOP Conference Series: Materials Science and Engineering.

[4]  I. Sholahuddin,et al.  Variasi Ukuran terhadap Kekerasan dan Laju Keausan Komposit Epoxy Alumunium-Serbuk Tempurung Kelapa untuk Kampas Rem , 2017 .

[5]  Okwu Modestus Okechukwu,et al.  Development and Assessment of Composite Brake Pad Using Pulverized Cocoa Beans Shells Filler , 2016 .

[6]  M. Hasbi,et al.  PROSES PEMBUATAN BIOKOMPOSIT POLIMER SERAT UNTUK APLIKASI KAMPAS REM , 2015 .

[7]  Agustinus Purna Irawan,et al.  Kekuatan Tekan dan Flexural Material Komposit Serat Bambu Epoksi , 2013 .

[8]  Yunhai Ma,et al.  Effects of bamboo fibers on friction performance of friction materials , 2013 .

[9]  Iriany,et al.  PENENTUAN KONDISI KESEIMBANGAN UNIT LEACHING PADA PRODUKSI EUGENOL DARI DAUN CENGKEH , 2012 .

[10]  V. Choudhary,et al.  Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix , 2010 .

[11]  N. Chand,et al.  Role of PVA modification in improving the sliding wear behavior of bamboo , 2009, BioResources.

[12]  S. Kim,et al.  Tribological Properties of Potassium Titanate in the Brake Friction Material; Morphological Effects , 2008 .

[13]  Y. Chugh,et al.  Development of fly ash-based automotive brake lining , 2007 .

[14]  A. Stoyanova,et al.  Chemical composition and antioxidant properties of clove leaf essential oil. , 2006, Journal of agricultural and food chemistry.

[15]  C. Bellehumeur Rotational Molding of Polymers , 2005 .

[16]  Mary C. Boyce,et al.  Durometer Hardness and the Stress-Strain Behavior of Elastomeric Materials , 2003 .

[17]  Zhiyuan Wang,et al.  Influence of thermal properties on friction performance of carbon composites , 2001 .

[18]  Bukang Zhou,et al.  Reformed bamboo/glass fabric/aluminium composite as an ecomaterial , 1998 .

[19]  W. Whitten Composites , 1977, Science.

[20]  S. Widodo,et al.  PENGARUH SERBUK KULIT BIJI MANGGA SEBAGAI PENGUAT KOMPOSIT KAMPAS REM TERHADAP SIFAT MEKANIS , 2019 .

[21]  Lafia Araga AN OVERVIEW OF BRAKE PAD PRODUCTION USING NON–HAZARDOUS REINFORCEMENT MATERIALS , 2018 .

[22]  K. C. Bala,et al.  Development and production of brake pad from sawdust composite , 2017 .

[23]  D. S. Yawas,et al.  Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad , 2013 .

[24]  Sutikno,et al.  SIFAT MEKANIK BAHAN GESEK REM KOMPOSIT DIPERKUAT SERAT BAMBU , 2012 .

[25]  J. Agunsoye Development of Asbestos-Free Brake Pad Using Bagasse , 2010 .

[26]  I. K. Puja Studi Sifat Impak Ketahanan Aus dan Koefisien Gesek Bahan Komposit Arang Limbah Serbuk Gergaji Kayu Glugu Dengan Matrik Epoxy , 2010 .

[27]  S. Monteiro,et al.  Diameter dependence of tensile strength by Weibull analysis: Part I bamboo fiber , 2010 .

[28]  P. Suarya ADSORPSI PENGOTOR MINYAK DAUN CENGKEH OLEH LEMPUNG TERAKTIVASI ASAM , 2008 .

[29]  Bhyrav Mutnuri Thermal conductivity characterization of composite materials , 2006 .

[30]  Kin Liao,et al.  Environmental effects on bamboo-glass/polypropylene hybrid composites , 2003 .