Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.

Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.

[1]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[2]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[5]  Keith Paton,et al.  An algorithm for finding a fundamental set of cycles of a graph , 1969, CACM.

[6]  Guanyu Zhu,et al.  Hardware-efficient fermionic simulation with a cavity–QED system , 2017, 1707.04760.

[7]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[9]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[10]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[11]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[12]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[13]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[14]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[15]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[16]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[17]  W. Marsden I and J , 2012 .

[18]  J. Pachos The wavefunction of an anyon , 2006, quant-ph/0605068.

[19]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[20]  Christof Zalka,et al.  Efficient Simulation of Quantum Systems by Quantum Computers , 1998 .

[21]  J. Cirac,et al.  Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter. , 2016, Physical review letters.

[22]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[23]  F. Verstraete,et al.  Mapping local Hamiltonians of fermions to local Hamiltonians of spins , 2005, cond-mat/0508353.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  R. Ball,et al.  Fermions without fermion fields. , 2004, Physical review letters.

[26]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[27]  H. Trotter On the product of semi-groups of operators , 1959 .

[28]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[29]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[30]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[31]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[32]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[33]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[34]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[35]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[36]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[37]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[38]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[39]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[40]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[41]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[42]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[43]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[44]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[45]  Peter M. Fenwick,et al.  A new data structure for cumulative frequency tables , 1994, Softw. Pract. Exp..

[46]  Lucas Visscher,et al.  Relativistic quantum chemistry on quantum computers , 2011, 1111.3490.

[47]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[48]  Ettore Majorana Teoria simmetrica dell’elettrone e del positrone , 1937 .

[49]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[50]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[51]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[52]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[53]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[54]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[55]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[56]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.