On some beta ridge regression estimators: method, simulation and application

The classic statistical method for modelling the rates and proportions is the beta regression model (BRM). The standard maximum likelihood estimator (MLE) is used to estimate the coefficients of the BRM. However, this MLE is very sensitive when the regressors are linearly correlated. Therefore, this study introduces a new beta ridge regression (BRR) estimator as a remedy to the problem of instability of the MLE. We study the mean squared error properties of the BRR estimator analytically and then based on the derived MSE, we suggest some new estimators of the shrinkage parameter. We also suggest a median squared error (SE) performance criterion, which can be used to achieve strong evidence in favour of the proposed method for the Monte Carlo simulation study. The performance of BRR and MLE is appraised through Monte Carlo simulation. Finally, an empirical application is used to show the advantages of the proposed estimator.

[1]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[2]  Lawrence S. Mayer,et al.  On Biased Estimation in Linear Models , 1973 .

[4]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[5]  Zhi-Fu Wang,et al.  On Biased Estimation in Linear Models , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[6]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[7]  G. Shukur,et al.  On Ridge Parameters in Logistic Regression , 2011 .

[8]  Selahattin Kaçıranlar,et al.  A new biased estimator based on ridge estimation , 2008 .

[9]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[10]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[11]  M. Amin,et al.  Performance of some ridge estimators for the gamma regression model , 2020 .

[12]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[13]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[14]  Francisco Cribari-Neto,et al.  Improved likelihood inference in Birnbaum-Saunders regressions , 2008, Comput. Stat. Data Anal..

[15]  Anthony C. Atkinson,et al.  Plots, transformations, and regression : an introduction to graphical methods of diagnostic regression analysis , 1987 .

[17]  M. Revan Özkale,et al.  The Restricted and Unrestricted Two-Parameter Estimators , 2007 .

[18]  B. F. Swindel Good ridge estimators based on prior information , 1976 .

[19]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[20]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[21]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[22]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[23]  Y. Chaubey,et al.  On some improved ridge estimators , 1987 .

[24]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[25]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[26]  J. Lawless,et al.  A simulation study of ridge and other regression estimators , 1976 .

[27]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[28]  B. M. Golam Kibria,et al.  Modified Liu-Type Estimator Based on (r − k) Class Estimator , 2013 .

[29]  B. M. Kibria,et al.  A new Poisson Liu Regression Estimator: method and application , 2019, Journal of applied statistics.

[30]  Hu Yang,et al.  A new stochastic mixed ridge estimator in linear regression model , 2010 .

[31]  Modified ridge-type estimator for the gamma regression model , 2020 .

[32]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .