Translational and rotational non-Gaussianities in homogeneous freely evolving granular gases.

The importance of roughness in the modeling of granular gases has been increasingly considered in recent years. In this paper, a freely evolving homogeneous granular gas of inelastic and rough hard disks or spheres is studied under the assumptions of the Boltzmann kinetic equation. The homogeneous cooling state is studied from a theoretical point of view using a Sonine approximation, in contrast to a previous Maxwellian approach. A general theoretical description is done in terms of d_{t} translational and d_{r} rotational degrees of freedom, which accounts for the cases of spheres (d_{t}=d_{r}=3) and disks (d_{t}=2, d_{r}=1) within a unified framework. The non-Gaussianities of the velocity distribution function of this state are determined by means of the first nontrivial cumulants and by the derivation of non-Maxwellian high-velocity tails. The results are validated by computer simulations using direct simulation Monte Carlo and event-driven molecular dynamics algorithms.

[1]  Y. Chen,et al.  High-energy velocity tails in uniformly heated granular materials. , 2022, Physical review. E.

[2]  Andrés Santos,et al.  Mpemba-like effect protocol for granular gases of inelastic and rough hard disks , 2022, Frontiers in Physics.

[3]  G. M. Kremer,et al.  Granular Gas of Inelastic and Rough Maxwell Particles , 2022, Journal of Statistical Physics.

[4]  J. L. Carrillo-Estrada,et al.  Crystallisation in a two-dimensional granular system at constant temperature , 2021, Scientific Reports.

[5]  E. Ben-Naim Granular Gases , 2021, Contemporary Kinetic Theory of Matter.

[6]  Andrés Santos,et al.  Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. I. Transport coefficients. , 2021, Physical review. E.

[7]  Andrés Santos,et al.  Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. II. Stability analysis. , 2021, Physical review. E.

[8]  Andrés Santos,et al.  Kullback–Leibler Divergence of a Freely Cooling Granular Gas , 2020, Entropy.

[9]  S. B. Yuste,et al.  The pseudo-two-dimensional dynamics in a system of macroscopic rolling spheres , 2020, 2006.15133.

[10]  M. Sperl,et al.  Velocity Distribution of a Homogeneously Cooling Granular Gas. , 2020, Physical review letters.

[11]  Andrés Santos,et al.  Large Mpemba-like effect in a gas of inelastic rough hard spheres. , 2019, Physical review. E.

[12]  Andrés Santos,et al.  Driven and undriven states of multicomponent granular gases of inelastic and rough hard disks or spheres , 2019, Granular Matter.

[13]  Andrés Santos,et al.  Energy production rates of multicomponent granular gases of rough particles. A unified view of hard-disk and hard-sphere systems , 2018, 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31.

[14]  Andrés Santos Interplay between polydispersity, inelasticity, and roughness in the freely cooling regime of hard-disk granular gases. , 2018, Physical review. E.

[15]  V. Garzó,et al.  Impact of roughness on the instability of a free-cooling granular gas. , 2018, Physical review. E.

[16]  A. Meunier,et al.  Dynamics of a 2D Vibrated Model Granular Gas in Microgravity , 2017 .

[17]  T. Pöschel,et al.  Velocity Distribution of a Homogeneously Driven Two-Dimensional Granular Gas. , 2017, Physical review letters.

[18]  Andrés Santos,et al.  Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force , 2015, 1508.06743.

[19]  Y. Nahmad-Molinari,et al.  Low Speed Granular–Granular Impact Crater Opening Mechanism in 2D Experiments , 2015 .

[20]  G. M. Kremer,et al.  Properties of the homogeneous cooling state of a gas of inelastic rough particles , 2014, 1407.6162.

[21]  V. Garzó,et al.  Transport coefficients of a granular gas of inelastic rough hard spheres. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  G. Bossis,et al.  Translational and rotational temperatures of a 2D vibrated granular gas in microgravity , 2014, The European physical journal. E, Soft matter.

[23]  V. Garzó,et al.  Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. M. Kremer,et al.  Role of roughness on the hydrodynamic homogeneous base state of inelastic spheres. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Graeme A. Bird,et al.  The DSMC Method , 2013 .

[26]  E. Trizac,et al.  Linear hydrodynamics for driven granular gases. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Peter Young,et al.  Everything you wanted to know about Data Analysis and Fitting but were afraid to ask , 2012, 1210.3781.

[28]  P. Evesque,et al.  Long range boundary effect of 2D intermediate number density vibro-fluidized granular media in micro-gravity , 2011 .

[29]  D. Villamaina,et al.  Fluctuating hydrodynamics and correlation lengths in a driven granular fluid , 2011, 1107.1446.

[30]  J. Brey,et al.  Choosing Hydrodynamic Fields , 2011, 1103.3953.

[31]  D. Villamaina,et al.  Non-equilibrium length in granular fluids: From experiment to fluctuating hydrodynamics , 2011, 1103.0166.

[32]  G. M. Kremer,et al.  Sonine approximation for collisional moments of granular gases of inelastic rough spheres , 2010, 1009.6180.

[33]  V. Garz'o,et al.  Hydrodynamics of Inelastic Maxwell Models , 2010, 1004.4453.

[34]  G. M. Kremer,et al.  Energy Production Rates in Fluid Mixtures of Inelastic Rough Hard Spheres(Frontiers in Nonequilibrium Physics-Fundamental Theory, Glassy & Granular Materials, and Computational Physics-) , 2009, 0910.5614.

[35]  V. Garzó,et al.  Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic fourier flow have in common? , 2009, Physical review letters.

[36]  J. Montanero,et al.  The second and third Sonine coefficients of a freely cooling granular gas revisited , 2008, 0812.3022.

[37]  J. Urbach,et al.  Steady base states for Navier–Stokes granular hydrodynamics with boundary heating and shear , 2008, Journal of Fluid Mechanics.

[38]  S. Puri,et al.  Velocity distributions and aging in a cooling granular gas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  T. Pöschel,et al.  Impact of high-energy tails on granular gas properties. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  A. Zippelius,et al.  Translations and rotations are correlated in granular gases. , 2006, Physical review letters.

[41]  S. Puri,et al.  Velocity distributions in a freely evolving granular gas , 2006 .

[42]  Nv Brilliantov,et al.  Erratum: Breakdown of the sonine expansion for the velocity distribution of granular gases (Europhysics Letters (2006) 74:3 (424-430) ) , 2006 .

[43]  I. Goldhirsch,et al.  Hydrodynamics of granular gases and granular gas mixtures , 2006, Journal of Fluid Mechanics.

[44]  T. Poeschel,et al.  Breakdown of the Sonine expansion for the velocity distribution of granular gases , 2005, cond-mat/0511483.

[45]  I. Goldhirsch,et al.  Hydrodynamics of nearly smooth granular gases. , 2005, The journal of physical chemistry. B.

[46]  Thorsten Pöschel,et al.  Kinetic Theory of Granular Gases , 2004 .

[47]  I. Goldhirsch,et al.  RAPID GRANULAR FLOWS , 2003 .

[48]  Andrés Santos,et al.  Kinetic Theory of Gases in Shear Flows: Nonlinear Transport , 2003 .

[49]  R. Behringer,et al.  Energy dissipation and clustering for a cooling granular material on a substrate , 2003 .

[50]  T. Pöschel,et al.  Hydrodynamics and transport coefficients for dilute granular gases. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  James W. Dufty,et al.  Kinetic Theory and hydrodynamics for a Low Density Granular Gas , 2001, Adv. Complex Syst..

[52]  N. Menon,et al.  Breakdown of energy equipartition in a 2D binary vibrated granular gas. , 2001, Physical review letters.

[53]  V. Garzó,et al.  Hydrodynamics for a granular mixture at low density , 2001 .

[54]  J. Dufty,et al.  Hydrodynamics for a granular binary mixture at low density , 2001, cond-mat/0105395.

[55]  R. Soto,et al.  Statistical mechanics of fluidized granular media: short-range velocity correlations. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  A. Zippelius,et al.  Free Cooling of Particles with Rotational Degrees of Freedom , 2000, cond-mat/0009304.

[57]  J. Dufty Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow , 2000 .

[58]  J. Montanero,et al.  Computer simulation of uniformly heated granular fluids , 2000, cond-mat/0002323.

[59]  M. J. Ruiz-Montero,et al.  On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation , 1999 .

[60]  T. Poeschel,et al.  Deviation from Maxwell distribution in granular gases with constant restitution coefficient , 1999, cond-mat/9906404.

[61]  M. Ernst,et al.  Velocity distributions in homogeneous granular fluids: the free and the heated case , 1998 .

[62]  I. Goldhirsch,et al.  Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order , 1998, Journal of Fluid Mechanics.

[63]  M. Louge,et al.  Measurements of impact properties of small, nearly spherical particles , 1997 .

[64]  M. Shapiro,et al.  Mechanics of collisional motion of granular materials. Part 4. Expansion wave , 1996, Journal of Fluid Mechanics.

[65]  Brey,et al.  Homogeneous cooling state of a low-density granular flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  T. Pöschel,et al.  The granular phase diagram , 1996, cond-mat/9609096.

[67]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[68]  E. Ben-Naim,et al.  Towards granular hydrodynamics in two dimensions , 1996, cond-mat/9607165.

[69]  M. Shapiro,et al.  Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations , 1995, Journal of Fluid Mechanics.

[70]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[71]  Sean McNamara,et al.  Hydrodynamic modes of a uniform granular medium , 1993 .

[72]  É. Clément,et al.  Fluidization of a Bidimensional Powder , 1991 .

[73]  P. Haff Grain flow as a fluid-mechanical phenomenon , 1983, Journal of Fluid Mechanics.

[74]  J. N. Fawcett,et al.  The oblique impact of elastic spheres , 1976 .

[75]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[76]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[77]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[78]  V. Garzó Granular Gaseous Flows , 2019, Soft and Biological Matter.

[79]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[80]  V. Garzó,et al.  Kinetic Theory of Gases in Shear Flows , 2003 .

[81]  James W Dufty Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow , 2000 .

[82]  Charles S. Campbell,et al.  RAPID GRANULAR FLOWS , 1990 .