Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

[1]  Daniel R Burnham,et al.  Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements. , 2012, Physical chemistry chemical physics : PCCP.

[2]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[3]  I. Barmpadimos,et al.  Relating hygroscopicity and composition of organic aerosol particulate matter , 2010 .

[4]  Beiping Luo,et al.  A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients , 2008 .

[5]  A. Robinson,et al.  A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution , 2011 .

[6]  M. R. D. Silva,et al.  Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids , 1999 .

[7]  A. Ravishankara,et al.  Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Petzold,et al.  Hygroscopic Properties of Sub-micrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments – A Review , 2007 .

[9]  Gregory S. Girolami,et al.  A Simple "Back of the Envelope" Method for Estimating the Densities and Molecular Volumes of Liquids and Solids , 1994 .

[10]  U. Baltensperger,et al.  Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review , 2008 .

[11]  T. Peter,et al.  A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles , 2008 .

[12]  D. Topping,et al.  Interactive comment on “The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties: part 2; determination of particle hygroscopicity and its dependence on “apparent” volatility” by D. O. Topping et al , 2011 .

[13]  Allen L. Robinson,et al.  A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics , 2010 .

[14]  A. Robinson,et al.  Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set , 2013 .

[15]  Spyros N. Pandis,et al.  Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model , 2008 .

[16]  A. M. Booth,et al.  Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry , 2010 .

[17]  S. Pandis,et al.  Simulations of smog-chamber experiments using the two-dimensional volatility basis set: linear oxygenated precursors. , 2012, Environmental science & technology.

[18]  A L Robinson,et al.  Coupled partitioning, dilution, and chemical aging of semivolatile organics. , 2006, Environmental science & technology.

[19]  S. Pandis,et al.  Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set , 2011 .

[20]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[21]  R. A. Cox,et al.  Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. II. Liquid-state vapor pressures of the acids. , 2010, The journal of physical chemistry. A.

[22]  A. Ravishankara,et al.  Determination of evaporation rates and vapor pressures of very low volatility compounds: a study of the C4-C10 and C12 dicarboxylic acids. , 2007, The journal of physical chemistry. A.

[23]  Deresh Ramjugernath,et al.  Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution , 2004 .

[24]  Mark H. Barley,et al.  Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water , 2008 .

[25]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[26]  I. Riipinen,et al.  Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. , 2007, The journal of physical chemistry. A.

[27]  J. Pankow Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework , 2003 .

[28]  Jonathan P. Reid,et al.  Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. , 2008, Chemical Society reviews.

[29]  K. H. Fung,et al.  Thermodynamic and optical properties of sea salt aerosols , 1997 .

[30]  Andrew J Orr-Ewing,et al.  Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap. , 2014, Physical chemistry chemical physics : PCCP.

[31]  Jonathan P. Reid,et al.  Time-Resolved Measurements of the Evaporation of Volatile Components from Single Aerosol Droplets , 2012 .

[32]  Jonathan P Reid,et al.  Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation. , 2010, The journal of physical chemistry. A.

[33]  T. Peter,et al.  Vapor pressures of substituted polycarboxylic acids are much lower than previously reported , 2013 .

[34]  M. Petters,et al.  Accurate Determination of Aerosol Activity Coefficients at Relative Humidities up to 99% Using the Hygroscopicity Tandem Differential Mobility Analyzer Technique , 2013 .

[35]  J. Reid,et al.  Accurate and efficient determination of the radius, refractive index, and dispersion of weakly absorbing spherical particle using whispering gallery modes , 2013 .

[36]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[37]  C. O'Dowd,et al.  Volatility of elemental carbon , 1994 .

[38]  C. Ruehl,et al.  Aerosol hygroscopicity at high (99 to 100%) relative humidities , 2009 .

[39]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[40]  I. Riipinen,et al.  Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations , 2011 .

[41]  M. Mavrovouniotis Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution , 1990, Biotechnology and bioengineering.

[42]  Andrew J Orr-Ewing,et al.  Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis. , 2012, Physical chemistry chemical physics : PCCP.

[43]  John H Seinfeld,et al.  Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria. , 2006, The journal of physical chemistry. A.

[44]  J. Seinfeld,et al.  Equilibration timescale of atmospheric secondary organic aerosol partitioning , 2012 .

[45]  Spyros N. Pandis,et al.  Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of α- and β-Pinene , 2001 .

[46]  C. Chan,et al.  The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. , 2001, Environmental science & technology.

[47]  G. Mcfiggans,et al.  The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol , 2009 .

[48]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[49]  I. Riipinen,et al.  Thermodynamic properties of malonic, succinic, and glutaric acids: evaporation rates and saturation vapor pressures. , 2007, Environmental science & technology.

[50]  David Topping,et al.  Cloud droplet number enhanced by co-condensation of organic vapours , 2013 .

[51]  E. James Davis,et al.  Determination of ultra‐low vapor pressures by submicron droplet evaporation , 1979 .

[52]  Steven Compernolle,et al.  EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions , 2011 .

[53]  M. McGlashan Deviations from Raoult's law , 1963 .

[54]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[55]  Claudia Marcolli,et al.  Exploring the complexity of aerosol particle properties and processes using single particle techniques. , 2012, Chemical Society reviews.

[56]  Stefan Reimann,et al.  Measuring atmospheric composition change , 2009 .

[57]  Jonathan P Reid,et al.  Comparing the mechanism of water condensation and evaporation in glassy aerosol , 2012, Proceedings of the National Academy of Sciences.

[58]  A. M. Booth,et al.  New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coeffi , 2011 .

[59]  M. Mavrovouniotis Estimation of standard Gibbs energy changes of biotransformations. , 1991, The Journal of biological chemistry.

[60]  D. Topping,et al.  A parameterisation for the activation of cloud drops including the effects of semi-volatile organics , 2013 .

[61]  Yangang Liu,et al.  Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols , 2008 .

[62]  A new approach to determine vapour pressures and hygroscopicities of aqueous aerosols containing semi-volatile organic compounds. , 2014, Physical chemistry chemical physics : PCCP.

[63]  A. Zardini,et al.  The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol , 2010 .

[64]  A. Wexler,et al.  An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range. , 2013, The journal of physical chemistry. A.

[65]  Jonathan P Reid,et al.  Using optical landscapes to control, direct and isolate aerosol particles. , 2009, Physical chemistry chemical physics : PCCP.

[66]  Peter Brimblecombe,et al.  Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds , 2001 .

[67]  A. Wexler,et al.  Statistical Mechanics of Multilayer Sorption: Extension of the Brunauer–Emmett–Teller (BET) and Guggenheim–Anderson–de Boer (GAB) Adsorption Isotherms , 2011 .

[68]  S. Pandis,et al.  Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies , 2012 .