Bias-Temperature Instabilities in 4H-SiC Metal–Oxide–Semiconductor Capacitors

Bias-temperature instabilities (BTIs) are investigated for n- and p-substrate 4H-SiC metal-oxide-semiconductor (MOS) capacitors. The midgap voltage (<i>V</i><sub>mg</sub>) shifts positively under positive bias stress at high temperatures for n-substrate capacitors with 67.5-nm nitrided oxides and shifts negatively under negative bias for p-substrate capacitors with 55-nm nitrided oxides. The magnitudes of the <i>V</i><sub>mg</sub> shifts are less than 0.5 V for electric fields of magnitudes of approximately ± 3.1 MV/cm for up to one day of stress at 150<sup>°</sup>C or 20 min of stress at 300<sup>°</sup>C. Switched-bias stressing at 150<sup>°</sup>C causes partially reversible shifts for the n-substrate capacitors, while the p-substrate capacitors show monotonically increasing negative shifts. Based on the measured temperature dependence of the <i>V</i><sub>mg</sub> shifts, the effective activation energy for BTI that is measured between room temperature and 250<sup>°</sup>C is 0.12 ± 0.02 eV for the n-substrate capacitors (positive shifts) and 0.23 ± 0.02 eV for the p-substrate capacitors (negative shifts). The midgap voltage shifts in these wide-bandgap devices are caused by charge capture at deep interface traps and N-related defects at or near the SiC-SiO<sub>2</sub> interface, which can be enhanced at elevated temperatures by the generation of additional carriers due to the ionization of deep dopants in the SiC during bias-temperature stress.

[1]  En Xia Zhang,et al.  Effects of Bias on the Irradiation and Annealing Responses of 4H-SiC MOS Devices , 2011, IEEE Transactions on Nuclear Science.

[2]  peixiong zhao,et al.  Bias-Temperature Instabilities and Radiation Effects on SiC MOSFETs , 2011 .

[3]  peixiong zhao,et al.  Atomic-scale origins of bias-temperature instabilities in SiC–SiO2 structures , 2011 .

[4]  T. Kimoto,et al.  Deep levels induced by reactive ion etching in n- and p-type 4H-SiC , 2010 .

[5]  K. Cheong,et al.  Metal-oxide–semiconductor characteristics of thermally grown nitrided SiO2 thin film on 4H-SiC in various N2O ambient , 2010 .

[6]  K. Matocha,et al.  Multiscale Modeling and Analysis of the Nitridation Effect of SiC/SiO2 Interface , 2010 .

[7]  A. Orouji,et al.  A Novel Nanoscale 4H-SiC-on-Insulator MOSFET Using Step Doping Channel , 2010, IEEE Transactions on Device and Materials Reliability.

[8]  peixiong zhao,et al.  Charge Trapping Properties of 3C- and 4H-SiC MOS Capacitors With Nitrided Gate Oxides , 2009, IEEE Transactions on Nuclear Science.

[9]  J. R. Williams,et al.  Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC , 2009 .

[10]  R. Ratajczak,et al.  Long-term stability of Ni-silicide ohmic contact to n-type 4H-SiC , 2008 .

[11]  J. Suehle,et al.  Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements , 2008, IEEE Transactions on Electron Devices.

[12]  N. Goldsman,et al.  Characterization of Transient Gate Oxide Trapping in SiC MOSFETs Using Fast $I$–$V$ Techniques , 2008, IEEE Transactions on Electron Devices.

[13]  Leonard C. Feldman,et al.  Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface , 2008 .

[14]  T. Grasser,et al.  Dispersive Transport and Negative Bias Temperature Instability: Boundary Conditions, Initial Conditions, and Transport Models , 2008, IEEE Transactions on Device and Materials Reliability.

[15]  A. Krishnan,et al.  Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability , 2007, IEEE Transactions on Device and Materials Reliability.

[16]  K. Matocha Challenges in SiC power MOSFET design , 2007, 2007 International Semiconductor Device Research Symposium.

[17]  S. Dhar,et al.  Suppression of interface state generation upon electron injection in nitrided oxides grown on 4H-SiC , 2007 .

[18]  D. Schroder,et al.  Evidence of negative bias temperature instability in 4H-SiC metal oxide semiconductor capacitors , 2007 .

[19]  S. Dhar,et al.  Bonding at the SiC-SiO2 interface and the effects of nitrogen and hydrogen. , 2007, Physical review letters.

[20]  L. Tsetseris,et al.  Effects of Switched-bias Annealing on Charge Trapping in HfO$_{2}$ Gate Dielectrics , 2006, IEEE Transactions on Nuclear Science.

[21]  peixiong zhao,et al.  Total Dose Radiation Response of Nitrided and Non-nitrided SiO$_{2}$/4H-SiC MOS Capacitors , 2006, IEEE Transactions on Nuclear Science.

[22]  Leonard C. Feldman,et al.  Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs – Challenges and Advances , 2006 .

[23]  Neil Goldsman,et al.  Bias Stress-Induced Threshold-Voltage Instability of SiC MOSFETs , 2006 .

[24]  James H. Stathis,et al.  The negative bias temperature instability in MOS devices: A review , 2006, Microelectron. Reliab..

[25]  J.A. Felix,et al.  Bias-temperature instabilities and radiation effects in MOS devices , 2005, IEEE Transactions on Nuclear Science.

[26]  S. Dhar,et al.  Interface trap passivation for SiO2∕(0001¯) C-terminated 4H-SiC , 2005 .

[27]  D. Look,et al.  Thermally stimulated current spectroscopy of high-purity semi-insulating 4H-SiC substrates , 2005 .

[28]  peixiong zhao,et al.  Physical mechanisms of negative-bias temperature instability , 2005 .

[29]  Ronald D. Schrimpf,et al.  Negative bias-temperature instabilities in metal–oxide–silicon devices with SiO2 and SiOxNy/HfO2 gate dielectrics , 2004 .

[30]  Z. Zolnai,et al.  Defects in SiC , 2003 .

[31]  J. Babcock,et al.  Dynamic recovery of negative bias temperature instability in p-type metal–oxide–semiconductor field-effect transistors , 2003 .

[32]  Kuan Yew Cheong,et al.  Investigation of electron-hole generation in MOS capacitors on 4H SiC , 2003 .

[33]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .

[34]  T. P. Chen,et al.  Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations , 2003 .

[35]  W. J. Choyke,et al.  Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study , 2002 .

[36]  M. Melloch,et al.  Status and prospects for SiC power MOSFETs , 2002 .

[37]  Daniel M. Fleetwood,et al.  Effects of hydrogen transport and reactions on microelectronics radiation response and reliability , 2002, Microelectron. Reliab..

[38]  M. Ventra,et al.  Atomic-scale dynamics of the formation and dissolution of carbon clusters in SiO(2). , 2001, Physical review letters.

[39]  peixiong zhao,et al.  Reactions of Hydrogen with Si-SiO 2 Interfaces , 2001 .

[40]  peixiong zhao,et al.  Reactions of hydrogen with Si-SiO/sub 2/ interfaces , 2000 .

[41]  L. Feldman,et al.  Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide , 2000 .

[42]  Kenji Fukuda,et al.  Reduction of interface-state density in 4H–SiC n-type metal–oxide–semiconductor structures using high-temperature hydrogen annealing , 2000 .

[43]  M. Schulz,et al.  Degradation of 6H-SiC MOS capacitors operated at high temperatures , 1999 .

[44]  Daniel M. Fleetwood,et al.  1/f noise, hydrogen transport, and latent interface-trap buildup in irradiated MOS devices , 1997 .

[45]  H. B. Harrison,et al.  INTERFACIAL CHARACTERISTICS OF N2O AND NO NITRIDED SIO2 GROWN ON SIC BY RAPID THERMAL PROCESSING , 1997 .

[46]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[47]  Daniel M. Fleetwood,et al.  Oxide, interface, and border traps in thermal, N2O, and N2O‐nitrided oxides , 1996 .

[48]  Daniel M. Fleetwood,et al.  Effects of interface traps and border traps on MOS postirradiation annealing response , 1995 .

[49]  J. F. Conley,et al.  Electron spin resonance evidence that E'/sub /spl gamma// centers can behave as switching oxide traps , 1995 .

[50]  W. J. Choyke,et al.  Nitrogen donors and deep levels in high‐quality 4H–SiC epilayers grown by chemical vapor deposition , 1995 .

[51]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[52]  Shigeo Ogawa,et al.  Interface‐trap generation at ultrathin SiO2 (4–6 nm)‐Si interfaces during negative‐bias temperature aging , 1995 .

[53]  peixiong zhao,et al.  Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates , 1994 .

[54]  P. Neudeck,et al.  Measurement of n‐type dry thermally oxidized 6H‐SiC metal‐oxide‐semiconductor diodes by quasistatic and high‐frequency capacitance versus voltage and capacitance transient techniques , 1994 .

[55]  Daniel M. Fleetwood,et al.  The role of border traps in MOS high-temperature postirradiation annealing response , 1993 .

[56]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[57]  J. Stathis,et al.  Trapping and trap creation studies on nitrided and reoxidized‐nitrided silicon dioxide films on silicon , 1991 .

[58]  E. H. Nicollian,et al.  Mechanism of negative‐bias‐temperature instability , 1991 .

[59]  H. E. Boesch,et al.  The nature of the trapped hole annealing process , 1989 .

[60]  H. E. Boesch,et al.  Reversibility of trapped hole annealing , 1988 .

[61]  D. Krick,et al.  Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study , 1988 .

[62]  P. S. Winokur,et al.  Correlating the Radiation Response of MOS Capacitors and Transistors , 1984, IEEE Transactions on Nuclear Science.

[63]  J. M. Andrews,et al.  Electrochemical Charging of Thermal SiO2 Films by Injected Electron Currents , 1971 .

[64]  M. V. Rao,et al.  Bias-stress induced threshold voltage and drain current instability in 4H–SiC DMOSFETs , 2008 .

[65]  Anant K. Agarwal,et al.  Status of SiC Power Devices and Manufacturing Issues , 2006 .

[66]  Muhammad Ashraful Alam,et al.  A comprehensive model of PMOS NBTI degradation , 2005, Microelectron. Reliab..